AGENDA
ESCAMBIA COUNTY PLANNING BOARD
August 8, 2011-8:35 a.m.
Escambia County Central Office Complex 3363 West Park Place, Room 104

1. Call to Order.
2. Invocation/Pledge of Allegiance to the Flag.
3. Proof of Publication.
4. Approval of Minutes
A. RECOMMENDATION: That the Planning Board review and approve the Meeting Summary Minutes of the July 11, 2011 Planning Board Meeting.
B. Planning Board Monthly Action Follow-up Report for August, 2011.
C. Planning Board 6-Month Outlook for August, 2011.
5. Public Hearings.

A Public Hearing - Firearm Regulations
That the Planning Board review and recommend to the Board of County Commissioners (BCC) to consider an ordinance amending or repealing various provisions of the Escambia County Code of Ordinances to ensure compliance with Section 790.33, Florida Statutes, as amended by House Bill 45 (2011).
6. Action/Discussion/Info Items.
A. Discussion Item - DSAP Preliminary Plan, presented by Barry Wilcox, VHB, Inc.
B. Discussion Item - Way Finding Signs, presented by Horace Jones, Divison Manager, Planning \& Zoning
7. Public Forum.
8. Director's Review.
9. County Attorney's Report.
10. Scheduling of Future Meetings.
A. The next Regular Planning Board meeting is scheduled for Monday, September 12, 2011 at 8:30 a.m. , in the Escambia County Central Office Complex, Room 104, First Floor, 3363 West Park Place, Pensacola, Florida.
11. Announcements/Communications.
12. Adjournment.

Board of County Commissioners Escambia County, Florida

Al-1070
Item \#: 4.
Planning Board-Regular
Meeting
08/08/2011
Date:

Agenda Item:

A. RECOMMENDATION: That the Planning Board review and approve the Meeting Summary Minutes of the July 11, 2011 Planning Board Meeting.
B. Planning Board Monthly Action Follow-up Report for August, 2011.
C. Planning Board 6-Month Outlook for August, 2011.

Attachments

Summary Minutes
Monthly Action Follow-up
6 Month Outlook

SUMMARY OF THE
 ESCAMBIA COUNTY PLANNING BOARD
 HELD ON JULY 11, 2011
 ESCAMBIA COUNTY CENTRAL OFFICE COMPLEX 3363 WEST PARK PLACE, FIRST FLOOR PENSACOLA, FLORIDA

(8:30 A.M. - 1:15 P.M.)

MEMBERS PRESENT: Wayne Briske, Chairman
Steven Barry
Dorothy Davis
Vann Goodloe
Karen Sindel
Alvin Wingate
Stephanie Oram, Navy Representative (non-voting)
MEMBERS ABSENT: Tim Tate, Vice Chair
Patty Hightower, School Board Representative (non-voting)
STAFF PRESENT: Stephen West, Assistant County Attorney
Horace Jones, Division Manager, Planning \& Zoning
Andrew Holmer, Senior Planner, Planning \& Zoning
Allyson Cain, Planner II, Planning \& Zoning
John Fisher, Planner II, Planning \& Zoning
Juan Lemos, Urban Planner I, Planning \& Zoning
Karen Spitsbergen, Board Clerk, Planning \& Zoning

8:30 AM Quasi-Judicial Meeting Convened

1. The meeting was called to order at 8:30 a.m. with 6 voting members present.
2. Invocation and pledge was given by Wingate.
3. Proof of Publication was given by the Board Clerk.
4. Rezoning Public Hearings

A.	Case No.:	Z-2011-10
Location:	10100 Aileron Ave.	
From:	SDD, Special Development District (non-	
	cumulative) Low Density, (3 du/acre)	
To:	ID-1, Light Industrial District, (cumulative) (no residential uses allowed)	
	Wequested by:	Watry C. "Buddy" Page, Agent for
	Buddy Page, Agent	
Speakers:	Don Weaver	
	Lawrence Taylor, Jr.	

Motion was made by Barry to accept staff's findings of fact and recommend approval of the ID-1 request, seconded by Sindel and passed unanimously (60).
B. Case No.:

Location:
From:
To:
Requested by:
Speakers:

Z-2011-11
4410 N Palafox St
C-1, Retail Commercial District, (cumulative) (25 du/acre)
ID-CP, Commerce Park District, (cumulative) (no residential uses allowed)
Paul Jansen, Owner
Paul Jansen, Owner

Motion was made by Wingate to accept staff's findings of fact and recommend approval of the ID-CP request, seconded by Goodloe and passed unanimously (6-0).
C. Case No.:

Location:
From:
To:
Requested by:
Speakers:

Z-2011-12
1950 Mathison Road
VR-1, Villages Rural Residential District, Gross Density (1 du/4 acres)
VR-2, Villages Rural Residential District, Gross
Density (1 du/. 75 acres)
Bryan Madril, Agent
Peggy Jackson, Owner
Bryan Madril, Agent

Motion was made by Davis to accept staff's findings of fact and recommend approval of the VR-2 request, seconded by Sindel and passed unanimously (60).
D. Case No.:

Location:
From:
To:
Requested by:
Speakers:

Z-2011-13
9015 Fowler Road
R-5, Urban Residential/Limited Office District, (cumulative) High Density, (20 du/acre)
C-2, General Commercial and Light
Manufacturing District, (cumulative) (20 du/acre)
Buddy Page, Agent
Charles Holt, Owner
Buddy Page, Agent
Charles Holt, Owner
Clifton Arnold
Gwen Butler

Motion was made by Goodloe to accept staff's findings of fact and recommend denial of the C-2 request, seconded by Sindel and passed (5-1) with Wingate opposing.

11:47 AM Regular Meeting Convened

(Davis and Oram left meeting.)
5. Board Minutes
A. RECOMMENDATION: That the Planning Board review and approve the Meeting Summary Minutes of the June 13, 2011 Planning Board Meeting.
Motion was made by Barry to approve the meeting minutes, seconded by Goodloe and passed unanimously (5-0).
B. Planning Board Monthly Action Follow-up Report for July 2011.

No Action Taken.
C. Planning Board 6-Month Outlook for July 2011.

No Action Taken.
6. Public Hearings
A. Comp Plan Text Amendment - Chapter 7, "Future Land Use Element", presented by Lloyd Kerr, Director, Development Services

Motion was made by Barry to recommend to the BCC the proposed Comprehensive Plan Amendment, Future Land Use Element herein, amending Part II of the Escambia County Code of Ordinances, the Escambia County Comprehensive Plan:2030; amending Chapter 7, "The Future Land Use Element," to add Policy 5.4.6, establishing a process for protection and management of regionally significant natural resources within the Optional Sector Plan; amending Policy 5.6.1 to delete certain requirements regarding conservation areas from the detailed specific area plans boundary determination analysis, seconded by Goodloe and passed unanimously (5-0).
7. Action/Discussion/Info Items
A. Discussion Item - Subdivision Rezoning, presented by T. Lloyd Kerr, Director, Development Services.

Mr. Kerr requested the Board give some direction on how this process should be handled through the county. There were three questions staff needed clarification on in order to develop this process; these were: 1) What would be a fair and equitable amount for a subdivision to pay to rezone the entire subdivision?; 2) What would be the notice requirements that would be used? (i.e. everyone within 500' of each individual parcel or those within 500' of the entire subdivision?); 3) What would be the percentage needed for approval of rezoning the entire subdivision?

The Board directed staff to take this request back to the Committee of the Whole for further clarification from the Board of County Commissioners as to what the intent was for this request. Staff was also directed to submit several different proposals with the Pros and Cons to the board.
B. Discussion Item - Perdido Key Neighborhood Plan Update, presented by Annie Griffin, Perdido Key Association

Ms. Griffin presented the findings of the survey that was conducted with all the property owners on Perdido Key both local and out of state owners. Perdido Key Association requested the Perdido Key Neighborhood Plan be incorporated into a Master Plan. This would allow future developers to have a guide to use for future development on Perdido Key.

Motion was made by Barry to transition the Perdido Key Neighborhood Plan into a Master Plan for the Key, seconded by Sindel and passed unanimously (5-0).
7. Bureau Chief's Report

No report.
8. County Attorney's Report

No report.
9. Scheduling of Future Meetings
A. The next Regular Planning Board meeting is scheduled for Monday, August 8, 2011 at 8:30 a.m., in the Escambia County Central Office Complex, Board Meeting Room, Room 104, 3363 West Park Place, Pensacola, Florida.
10. Adjournment

1:15 PM - Regular Board Meeting Adjourned

MEMORANDUM

TO: Planning Board

FROM: Karen Spitsbergen, Clerk to the Board Planning \& Zoning Division

DATE: July 22, 2011
RE: \quad Monthly Action Follow-Up Report for August 2011
Following is a status report of Planning Board (PB) Agenda Items for the Month of August. Some items include information from previous months in cases where final disposition has not yet been determined. Post-monthly actions are included (when known) as of report preparation date. Items are listed in chronological order, beginning with the PB initial hearing on the topic.

PROJECTS, PLANS, \& PROGRAMS

1. Optional Sector Plan (OSP) Detailed Specific Area Plan (DSAP) 03/17/11 The BCC approved an amended Mid-West Escambia County Optional Sector Plan Detailed Specific Area Plan Boundary.
05/11/11 Staff held a Conceptual Plan Workshop at Ransom Middle School to discuss the preliminary Detailed Specific Area Plan (DSAP)

COMMITTEES \& WORKING GROUP MEETINGS
None

COMPREHENSIVE PLAN AMENDMENTS

1. Comprehensive Plan Amendment 2011-01 - Chapter 7, "Future Land Use Element"-adding Policy 5.4.6, establishing a process for protection and management of regionally significant natural resources with the Optional Sector Plan; amending Policy 5.6.1 to delete certain requirements regarding conservation areas from the detailed specific area plans boundary determination analysis.
07/07/11 PB reviewed and forwarded to the Board of County Commissioners the proposed Comprehensive Plan Text Amendment for approval.

LAND DEVELOPMENT CODE ORDINANCES

1. Article 6 Motorized Commercial Recreational Uses

03/07/11 PB discussed including motorized commercial recreational uses as a permitted use within the VAG zoning districts
04/11/11 PB directed staff to draft language to be included in the LDC that would allow motorized commercial uses within the VAG zoning districts (with a minimum lot size of 20 acres). In addition, changing golf courses, tennis centers, swimming clubs and customary attendant facilities and accessory buildings from a conditional use to permitted uses in the VAG zoning districts.
05/09/11 PB reviewed and recommended approval of the Ordinance to the BCC; forwarded to 07/07/11 BCC for the first of two public hearings.
07/07/11 BCC held the first of two public hearings.
08/04/11 BCC to hold second of two public hearings.
2. Article 6 Recreational Vehicle as Living Quarters

05/09/11 PB directed staff to draft language to be included in the LDC that would eliminate the language that would allow a conditional use permit to be obtained when an RV is used as living quarters longer than 14 calendar days.
06/13/11 PB reviewed and recommended approval of the Ordinance to the BCC; forwarded to the 08/04/11 BCC for the first of two public hearings.
08/04/11 BCC to hold first of two public hearings.
REZONING CASES

1. Rezoning Case Z-2011-10

07/07/11 PB reviewed and recommended approval of Z-2011-10; forwarded to 08/04/11 BCC for approval
2. Rezoning Case Z-2011-11

07/07/11 PB reviewed and recommended approval of Z-2011-11; forwarded to 08/04/11 BCC for approval
3. Rezoning Case Z-2011-12

07/07/11 PB reviewed and recommended approval of Z-2011-12; forwarded to 08/04/11 BCC for approval
4. Rezoning Case Z-2011-13

07/07/11 PB reviewed and recommended denial of Z-2011-13; forwarded to 08/04/11 BCC for approval

PLANNING BOARD MONTHLY SCHEDULE 6 MONTH OUTLOOK FOR AUGUST 2011

(Revised 07/12/11)
A.H. = Adoption Hearing T.H. $=$ Transmittal Hearing \quad P.H. $=$ Public Hearing

* Indicates topic/date is estimated-subject to staff availability for project completion and/or citizen liaison

Planning Board Meeting Date	LDC Changes	Comprehensive Plan Amendments	Rezonings	Reports, Discussion and/or Action Items
Monday, August 8, 2011	• Firearms Deregulation		Z-2011-14 Z-2011-15	• DSAP - Preliminary Plan-Public Workshop -Way Finding Signs - Subdivision Rezoning Process
Monday, September 12, 2011	*Way Finding Signs	*CPA-2011-02 - Map Amendment - 200 Becks Lake Rd		* A.H. - DSAP Final Plan - RVs as Extended Living Facilities
Monday, October 10, 2011			*PSFE ILA Working Group *CIP Update	
Monday, November 7, 2011				
Monday, December 12, 2011				

Disclaimer: This document is provided for informational purposes only. Schedule is subject to change. Verify all topics on the current meeting agenda one week prior to the meeting date.

Board of County Commissioners
 Escambia County, Florida

Al-1116
Item \#: 5.
Planning Board-Regular
Meeting
Date:
Issue: A Public Hearing - Firearm Regulations
From: T. Lloyd Kerr, AICP
Organization: Development Services

RECOMMENDATION:

That the Planning Board review and recommend to the Board of County Commissioners (BCC) to consider an ordinance amending or repealing various provisions of the Escambia County Code of Ordinances to ensure compliance with Section 790.33, Florida Statutes, as amended by House Bill 45 (2011).

BACKGROUND:

During its 2011 session, the Florida Legislature approved, and Governor Scott signed, House Bill 45 , which amends Section 790.33 , Florida Statutes. Section 790.33 preempts the regulation of firearm to the state government. Through House Bill 45, the Legislature has confirmed its intent to entirely preempt the field of regulating firearms and ammunition, and has established penalties for local government officials who adopt or enforce any local regulation of firearms and ammunition. In response to House Bill 45, local governments throughout Florida have amended or repealed ordinances regulating the possession, sale, or use of firearms. Accordingly, this ordinance amends or repeals various provisions of the Escambia County Code of Ordinances to ensure compliance with Section 790.33, as amended by House Bill 45.

BUDGETARY IMPACT:

No budgetary impact is anticipated by the adoption of this Ordinance.

LEGAL CONSIDERATIONS/SIGN-OFF:

The attached Ordinance has been reviewed and approved for legal sufficiency by Ryan Ross, Assistant County Attorney. Any recommended legal comments are attached herein.

PERSONNEL:

No additional personnel are required for implementation of this Ordinance.

POLICYIREQUIREMENT FOR BOARD ACTION:

The proposed Ordinance is consistent with the Board's goal "to increase citizen involvement in, access to, and approval of, County government activities."

IMPLEMENTATION/COORDINATION:

Implementation of this Ordinance will consist of an amendment to the LDC and distribution of a copy of the adopted Ordinance to interested citizens and staff.

The proposed Ordinance was prepared in cooperation with the Development Services Department, the County Attorney's Office and all interested citizens. The Development Services Department will ensure proper advertisement.

Attachments

Legal Review;Ordinance Draft 1B

Legal Review

LEGAL REVIEW

(COUNTY DEPARTMENT USE ONLY)

Document: Firearm Ordinance Draft 1A

Date: $\underline{07 / 15 / 11}$

Date requested back by: 07/21/11
Requested by: Allyson Cain
Phone Number:
595-3547
(LEGAL USE ONLY)

Ryan E. Ross, Asst. County Attorney
\qquad
Legal Review by 7/19/2011
Date Received: \qquad

XXX
Approved as to form and legal sufficiency.
_ Not approved.
_Make subject to legal signoff.

Additional comments:

Firearm Regulation Ordinance

Draft 1A

AN ORDINANCE OF THE BOARD OF COUNTY COMMISSIONERS OF ESCAMBIA COUNTY, FLORIDA, AMENDING AND REPEALING CERTAIN LAND DEVELOPMENT CODE SECTIONS TO ENSURE COMPLIANCE WITH THE STATE PREEMPTION OF LOCAL FIREARM REGULATIONS; AMENDING ARTICLE 6, SECTION 6.05.01.D. BY DELETING HUNTING PRESERVES, SHOOTING RANGES, AND GUN AND RIFLE CLUBS AS CONDITIONAL USES IN THE AGRICULTURAL (AG) ZONING DISTRICTS; AMENDING ARTICLE 6, SECTION 6.05.01.B. TO ADD HUNTING PRESERVES, SHOOTING RANGES, AND GUN AND RIFLE CLUBS AS PERMITTED USES IN THE AGRICULTURAL (AG) ZONING DISTRICTS; AMENDING ARTICLE 6, SECTION 6.05.02.D. BY DELETING THE SAME AS CONDITIONAL USES IN THE RURAL RESIDENTIAL (RR) ZONING DISTRICTS; AMENDING ARTICLE 6, SECTION 6.05.22.D. BY DELETING THE SAME IN THE VILLAGES AGRICULTURAL (VAG) ZONING DISTRICTS; AMENDING ARTICLE 6, SECTION 6.05.22.B. TO ADD HUNTING PRESERVES, SHOOTING RANGES, AND GUN AND RIFLE CLUBS AS PERMITTED USES IN THE VAG ZONING DISTRICTS; PROVIDING FOR SEVERABILITY; PROVIDING FOR INCLUSION IN THE CODE; PROVIDING FOR AN EFFECTIVE DATE.

WHEREAS, the 2011 Florida Legislature has approved, and Governor Scott has
signed, House Bill 45, which amends Section 790.33, Florida Statutes; and
WHEREAS, through House Bill 45, the Legislature has confirmed its intent to
entirely preempt the field of regulating firearms and ammunition; and
WHEREAS, the Legislature has established penalties for local government
officials who adopt or enforce any local regulation of firearms and ammunition; and
WHEREAS, the Escambia County Board of County Commissioners desires to
amend or repeal certain provisions of the Escambia County Land Development Code to
ensure compliance with the Section 790.33, as amended by House Bill 45.
NOW, THEREFORE, BE IT ORDAINED BY THE BOARD OF COUNTY COMMISSIONERS OF ESCAMBIA COUNTY, FLORIDA:

SECTION 1. AGRICULTURAL (AG) ZONING DISTRICTS.

Article 6, Section 6.05.01. of the Escambia County Land Development Code is hereby amended as follows:
6.05.01. AG agricultural district, low density.

B Permitted Uses.
23. Hunting preserves, shooting ranges, gun and rifle clubs, etc.
D. Conditional uses.

1. Hunting preserve, shooting ranges, gun and rifle clubs, etc.
2. 2. Public buildings for general administrative, executive or studio functions, or for general warehousing or maintenance operations.
1. 3. Wastewater treatment facilities, electric power generation facilities or substations, and solid waste transfer stations or collection points and/or processing facilities.
1. 4. Oil wells/mineral extraction and commercial antenna towers more than 150 feet in height.
1. 5. Hospitals, nursing homes and similar uses, except in the Coastal High Hazard Area (CHHA) future land use categories.
1. 6. The raising of exotic animals and birds.
1. 7. Junkyards, salvage yards, and waste tire processing facilities.
1. 8. Two-family dwellings.
1. 9. Clinics.

SECTION 2. RURAL RESIDENTIAL (RR) ZONING DISTRICTS.

Article 6, Section 6.05.02. of the Escambia County Land Development Code is hereby amended as follows:
6.05.02. RR rural residential district (cumulative), Iow density.
C. Conditional uses.
6. Shooting ranges, gum and rifle clubs, etc.
6. 7. Country clubs, golf courses and tennis clubs.
7. 8. Any conditional use permitted in the preceding district, except antenna towers.
8. 9. Guest residence for medical care.
9. 10. Borrow pits and reclamation activities thereof (subject to local permit and development review requirements per Escambia County Code of Ordinances, Part I, Chapter 42, article VIII, and performance standards in Part III, the Land Development Code, article 7).
10. 11. Solid waste transfer stations, collection points, and/or processing facilities.

SECTION 3. VILLAGES AGRICULTURAL (VAG) ZONING DISTRICTS.

Article 6, Section 6.05.22. of the Escambia County Land Development Code is hereby amended as follows:
6.05.22. VAG villages agricultural districts.
B. Permitted uses.
24.Hunting preserves, shooting ranges, gun and rifle clubs, etc.
D. Conditional uses.

1. Hunting preserves, shooting ranges, gun and rifle clubs, etc.
2. Ł. Golf courses, tennis centers, swimming clubs and customary attendant facilities and accessory buildings.
2.3. Public buildings for general administrative, executive or studio functions, or for general warehousing or maintenance operations (see section 6.08.02).
3. 4. Wastewater treatment facilities, electric power generation facilities or substations, and solid waste transfer stations, collection points and/or processing facilities.
4.-5. Oil wells/mineral extraction and commercial antenna towers more than 150 feet in height.
5.6. Hospitals, clinics, nursing homes and similar uses.
6.7. Borrow pits and reclamation activities thereof (subject to local permit and development review requirements per Escambia County Code of Ordinances, Part I, Chapter 42, article VIII, and performance standards in Part III, the Land Development Code, article 7).
7.8. Junkyards, salvage yards, and waste tire processing facilities.

SECTION 4. SEVERABILITY.

If any section, sentence, clause or phrase of this Ordinance is held to be invalid or unconstitutional by any Court of competent jurisdiction, then said holding shall in no way affect the validity of the remaining portions of this Ordinance.

SECTION 5. INCLUSION IN THE CODE.

It is the intention of the Board of County Commissioners that the provisions of this Ordinance shall be codified as required by Section 125.68, Fla. Stat. (2009); and that the sections, subsections and other provisions of this Ordinance may be renumbered or relettered and the word "ordinance" may be changed to "section", "article", or such other appropriate word or phrase in order to accomplish such intentions.

SECTION 6. EFFECTIVE DATE.

This Ordinance shall become effective upon filing with the Department of State.
DONE AND ENACTED THIS \qquad DAY OF \qquad , 2011.

BOARD OF COUNTY COMMISSIONERS ESCAMBIA COUNTY, FLORIDA

Kevin W. White, Chairman
Clerk of the Circuit Court

Deputy Clerk

(Seal)

Enacted:
Filed with Department of State:
Effective: \qquad

Board of County Commissioners Escambia County, Florida

Al-1157
Item \#: 6.
Planning Board-Regular
Meeting
08/08/2011
Date:

Agenda Item:

A. Discussion Item - DSAP Preliminary Plan, presented by Barry Wilcox, VHB, Inc.
B. Discussion Item - Way Finding Signs, presented by Horace Jones, Divison Manager, Planning \& Zoning

Attachments

Preliminary DSAP

Memorandum
 To: T. Lloyd Kerr, AICP
 Date: July 28, 2011
 Development Services Director Escambia County
 Project No.: $\quad 61573.00$
 From: Barry Wilcox, AICP
 Re: Preliminary DSAP
 Attached to this memorandum are the components of the Mid-west Escambia County Optional Sector Plan's Preliminary Detailed Specific Area Plan (DSAP) as defined by Escambia County Comprehensive Plan Policy FLU 5.6.1. The Preliminary DSAP reflects the third step in the overall sector plan process, and builds upon the previously approved Conceptual Framework Map (Master Plan) and its adopted Goals, Objectives, Policies and development program. The Preliminary DSAP; however, remains a draft plan comprised of the following seven (7) basic components, each of which are respectively described in greater detail below.

- Statement of Goals and Objectives
- Detailed Land Use Plan
- Detailed Public Facilities Plan
- Detailed Natural Resource Analysis
- Housing Analysis
- Energy Efficiency Analysis; and
- Land Use Need Analysis

Statement of Goals and Objectives

A statement of goals and objectives was compiled utilizing input from the nearly two dozen community meetings, workshops and stakeholder interviews conducted during both the sector plan visioning process. These goals and objectives are summarized in Exhibit 1.

Detailed Land Use Plan

Using the adopted long-range Conceptual Framework Map (Master Plan) and its associated Goals, Objectives, Policies as a guide, a refined conceptual land use plan was prepared for the DSAP. This conceptual land use plan was initially prepared as a "sketch" plan for easy review during a series of public meetings and workshops. After receiving and considering all input from the community, development groups and County staff, the plan was revised accordingly.

The preliminary land use plan attached to this memorandum as Exhibit 2 reflects the consensus from all DSAP stakeholders.

The preliminary land use plan is comprised of four basic components; the land use map, development program, design guidelines and circulation plan. The land use map (Exhibit 2-A) identifies the location of employment districts, mixed-use centers and residential neighborhoods, potential park and school sites and mobility improvements. The map is comprised of 132 planning sub-areas; each assigned a specific land use and development program.

Accompanying the land use map is a series of tables containing development programs for each of the sub-areas (Exhibit 2-B). Regional Employment District or Centers were assigned a development program based on the proportionate share of the total maximum non-residential square footage per district. This calculation was guided by the adopted sector plan policies (FLU 5.2.1 and FLU 5.5.1). No changes to the adopted land use mix for these areas have been proposed.

Areas designated as residential neighborhoods were sub-divided into four districts: Traditional Village, Traditional Garden, Suburban Garden and Conservation Community. Each of these districts were then assigned maximum, minimum and median or "target" densities based on adopted sector plan policies (FLU 5.5.2). Development programs for each of the residential planning areas were calculated utilizing the aforementioned districts' respective density range and acreage.

Design guidelines were developed for the various land use districts identified in the plan (Exhibit 2-C). As directed by County staff, the draft guidelines utilize existing zoning district standards as their basis and, where necessary, augment those standards to ensure consistency with the Mid-west Escambia County Optional Sector Plan goals, objectives and policies. They are intended to ensure that development within the DSAP advances the goals of the sector plan as identified by the citizens, staff and Escambia County public officials. In general, these guidelines address things such as density and intensity; land use mix; site and building design; streets; parking and circulation; landscaping; and park/open space provisions.

Finally, a DSAP circulation plan was created to accompany the conceptual land use plan (Exhibit 2-D). This plan identifies conceptual transportation network improvements proposed to enhance the connectivity of the DSAP. Recommended roadway cross-sections have also been created for each of the existing and proposed transportation corridors. These crosssections include multi-modal facilities intended to improve mobility and accessibility for pedestrians, cyclists, transit riders and motorists. In addition, the proposed cross-sections are intended to guide urban form through the graphical representation of building setbacks and onstreet parking.

Detailed Public Facilities Plan

A detailed public facilities plan that analyzes the impacts of the DSAP development program and addresses potential deficiencies has been prepared and attached as Exhibit 3. This plan is comprised of two primary components; a transportation analysis and a utilities analysis. These items are attached as Exhibits 3-A and 3-B, respectively.

Detailed Natural Resource Analysis

A detailed natural resource analysis of the DSAP area was conducted by Wetland Sciences, Inc. This analysis included a review for the occurrence of protected plant and wildlife species and an analysis of ecological communities located within the DSAP.

Housing Analysis

A housing analysis was completed to establish an estimate of affordable housing demand generated by the DSAP development program. This analysis estimates both the total number of households potentially generated by the DSAP employment centers as well as the average income of those households. This analysis is attached as Exhibit 5.

Energy Efficiency Analysis

An energy efficiency analysis was conducted to evaluate the DSAP land use plan's ability to reduce energy costs and greenhouse gas emissions. This analysis, attached as Exhibit 6, also includes recommendations intended to supplement the above-mentioned design guidelines.

Land Use Need Analysis

A land use need analysis was conducted to demonstrate that the proposed mixture of land uses within the DSAP is sufficient to accommodate the projected population and their associated employment demands. This analysis is attached as Exhibit 7.

EXHIBIT 1 STATEMENT OF GOALS AND OBJECTIVES

Statement of Community Goals and Objectives

In April 2008, the State of Florida and Escambia County entered into a formal Optional Sector Plan Agreement that allowed the County to initiate this innovative visioning process to more effectively address long-term planning issues of regional significance within a large geographical area. However, as a collaborative effort between the County, the West Central Florida Regional Planning Council and a group of affected property owners and developers, the initial exercise began in 2007 and sought to address key issues in the following manner:

1. Economy - Strengthening the regional economy by providing a more appropriate mix of land uses that result in a balanced relationship between the population and employment opportunities.
2. Physiographic Features - Ensuring a sustainable relationship between growth and significant natural eco-systems/water management functions in the County. This issue also focused on providing better habitat connectivity, including clustered residential development.
3. Land Use Analysis - Creating compatible and sustainable land use patterns by strengthening the County's jobs-to-housing balance, avoiding future blight, protecting conservation and preservation areas, and enhancing important agricultural resources.
4. Public Services/Infrastructure - Maximizing the efficient provision of public services, including central water, wastewater, reclaimed water and reuse, regional stormwater facilities, schools, parks, civic/institutional facilities and public health care facilities.
5. Governmental Land Use and Related Policies - Ensuring consistency with the Comprehensive Plan and applicable Land Development Code, and applicable sections of the Strategic Regional Policy Plan (SRPP).
6. Financial Resource Analysis - Maximizing the County's financial resources, including impact analysis of the agricultural, silvicultural, tourism and military industries.
7. Affordable Housing - Providing affordable housing opportunities and demonstrating the need for the proposed amount of residential development and its affordability mix.
8. Traffic Planning - Addressing transportation and circulation issues including enhanced access management, public transit provision, programmed and proposed capacity improvements and future utility corridors. The focal point of this issue was ensuring the existence of an interconnected, multi-modal transportation system, consisting of regional, county and local roads, bikeways, pathways and transit.

Between September 2007 and January 2011, the County and its partners completed the Escambia County Mid-West Optional Sector Plan (OSP) visioning process which included an extensive development trend analysis and review of various long-term buildout scenarios. Throughout this process the County recognized the importance of public involvement by holding more than twenty (20) stakeholder meetings and public workshops /hearings. This series of public involvement
forums culminated in the adoption of the OSP Conceptual Long-Term Buildout and Overlay (Master Plan), and associated Comprehensive Plan policies.

Through this exercise, the community identified and prioritized four (4) general principles that were adopted into the Comprehensive Plan under Future Land Use Element (FLUE) Goal 5, Objective 5.1, and Policy 5.1.2. These principles are listed below and constitute the community goals and objectives to be accomplished within the two (2) Detailed Specific Area Plans (DSAPs).

Policy FLU 5.1.2 Development within the OSP area shall support and further the following general principles:

Economic Development

a. Promote economic development and job creation
b. Promote the fiscally efficient use of land and infrastructure
c. Provide adequate retail and service opportunities to meet the needs of the surrounding community

Transportation

a. Create a highly interconnected, multi-modal transportation system that efficiently links housing to employment and retail opportunities
b. Develop a hierarchy of transportation corridors that would increase mobility and accessibility within the OSP while respecting existing residential development
c. Create an interconnected and accessible pedestrian and bicycle network
d. Reduce vehicle trips (VT) and vehicle miles traveled (VMT) through the use of compact, mixed-use and transit-oriented development patterns

Environment

a. Establish a "green infrastructure" network of interconnected recreation areas and open space
b. Identify, protect and when impacted by development restore key ecosystems
c. Identify, protect and when impacted by development restore wildlife habitat and corridors
d. Reduce greenhouse gas (GHG) emissions

Community Design

a. Create a hierarchy of place
b. Promote compact neighborhood design
c. Create neighborhoods that would provide a broad range of housing options varying in size, style, cost and type of ownership
d. Provide neighborhood schools and parks within close proximity to housing consistent with Chapter 16, Public Schools Facilities Element
e. Construct resource-efficient homes and businesses

EXHIBIT 2 DETAILED LAND USE PLAN

EXHIBIT 2-A LAND USE MAP

Legend	
	DSAP Boundary
	Regional Employment
	Town Center
	Village Center
	Neighborhood Center
	Traditional Village
	Traditional Garden
	Suburban Garden
	Conservation Neighborhood
	Public
	Low-Impact Natural Resource Area
	Conservation
$17 / \lambda$	Proposed Bee Line Corridor
-	Existing ROW
$=$ = =	Proposed ROW
+1	Railroad
P	Elementary / Middle School
	High School
2s	Community Park
今全	Regional Park

Notes:

1. Location and extent of Low-impact Natural Resource Areas are approximate and subject to change pursuant to permitting through the Northwest Florida Water Management District
2. Proposed roadway alignments are conceptual and subject to further refinement and permitting.
3. The Potential Beeline Corridor is conceptual in nature and not intended to depict a pre-determined alignment. . Public park and school sites have been preliminarily located based upon calculated demand at build-out and proximity to population centers. The specific location proximity to population centers. The specific location
and size of the identified sites are subject to approval by and size of the identified sites are subject to appro
the site owner and acquisition by the appropriate the site owner and acquisition by the appropriate
governing authority and may change accordingly. The preliminary site locations shall not be construed as a requirement for the construction of parks and schools on the identified sites or as otherwise prejudicing the site owner's ability to develop the site.

225 East Robinson Street, Suite 300 Orlando, Florida 32801 | 407.839 .4006

Escambia County DSAP

EXHIBIT 2-B

DEVELOPMENT PROGRAM

LAND USE		DEV. ACRES	LOW DEN.	MED. DEN.	HIGH DEN.	UNITS			MAX. NON-RES. SQ. FT.	
		LOW				MEDIUM	HIGH			
Conservation Neighborhood			3,855.5	0.1	1	3	385	3,855	11,566	0
Suburban Garden		1,770.6	3	5	10	5,311	8,853	17,706	0	
Traditional	Garden	594.9	5	7	15	2,974	4,164	8,923	0	
	Village	248.1	7	12	20	1,736	2,977	4,961	0	
Village Center*		84.2	7	15	25	176	378	631	400,000	
Town Center **		300.0	10	15	25	1,200	1,800	3,000	1,200,000	
Regional Employment District***		1,738.2	10	15	20	869	1,303	1,738	10,500,000	
Neighborhood Center		20.2	5	5	5	100	100	100	60,000	
Utility ${ }^{\text {TOTALS: }}$		0.0	0	0	0	0	0	0	0	
		8,611.7				12,751	23,430	48,625	12,160,000	

** Density assumptions in the Town Centers are applied to 40% of developable acreage
*** Density assumptions in the Regional Employment Districts are applied to 5\% of developable acreage
NOTE 1: Differences in the total units from that in the detailed density chart are due to rounding.
NOTE 2: Developable acreage is approximate and is subject to change as a result of final engineering and surveying

${ }_{*}^{*}$ Density assumptions in the Venter Centers are applied to 0 060\% of developable acreage
$* *$ Density assumptions in the Town Centers are applied to 40% of develoopable acreage
$* * *$ Density assumptions in the Regional Employment Districts are applied to 5% of devel
NOTE: Developable acreage is approximate and is subject to change as a result of f final engineering and sur

ESCAMBIA COUNTY - DSAP DEVELOPMENT PROGRAM CALCULATIONS

PARCEL NUMBER	NON-RESIDENTIAL LAND USE	DEV. ACRES	MAX. FAR PER SITE	MAX. NON-RES. SQ. FT.
18	Neighborhood Center	5.0	0.25	15,000
27	Village Center	40.0	0.50	200,000
45	Regional Employment	6.5	0.50	57,478
46	Regional Employment	71.9	0.50	634,999
47	Regional Employment	124.3	0.50	1,097,740
48	Regional Employment	80.4	0.50	709,783
49	Neighborhood Center	5.1	0.25	15,000
60	Town Center	190.2	1.00	760,578
62	Town Center	32.0	1.00	128,143
63	Town Center	77.8	1.00	311,279
80	Village Center	8.5	0.50	38,587
81	Village Center	35.6	0.50	161,413
93	Neighborhood Center	5.0	0.25	15,000
98	Regional Employment	37.8	0.50	208,569
99	Regional Employment	265.3	0.50	1,465,786
100	Regional Employment	28.6	0.50	158,181
101	Regional Employment	19.1	0.50	105,252
102	Regional Employment	33.3	0.50	183,762
103	Neighborhood Center	5.0	0.50	15,000
104	Regional Employment	8.0	0.25	44,090
105	Regional Employment	48.2	0.50	266,140
106	Regional Employment	33.1	0.50	182,712
107	Regional Employment	71.7	0.50	396,088
108	Regional Employment	5.6	0.50	30,940
109	Regional Employment	93.6	0.50	516,865
110	Regional Employment	4.8	0.50	26,631
111	Regional Employment	13.8	0.50	76,245
112	Regional Employment	187.8	0.50	1,037,542
113	Regional Employment	23.3	0.50	128,622
114	Regional Employment	83.5	0.50	461,394
116	Regional Employment	1.5	0.50	8,343
117	Regional Employment	129.8	0.50	717,257
118	Regional Employment	35.4	0.50	195,586
119	Regional Employment	311.8	0.50	1,722,535
120	Regional Employment	10.5	0.50	57,736
121	Regional Employment	1.8	0.50	9,724
	TOTALS:	2,135.5	S	12,160,000

NOTE: Developable acreage is approximate and is subject to change as a result of final engineering and surveying.

EXHIBIT 2-C

DESIGN GUIDELINES

RESIDENTIAL GUIDELINES

A. General Description

Neighborhood districts within the DSAP include Conservation Neighborhood, Suburban Garden, Traditional Garden and Traditional Village districts. These neighborhoods are intended to meet the needs of a wide array of Escambia County residents. Permitted housing types include both attached and detached single and multi-family dwellings with a broad range of densities. The most intense neighborhoods are located adjacent to Town, Village and Neighborhoods centers to place the greatest number of residents within close proximity to employment, retail and civic opportunities. Public parks and open space play an integral role in all neighborhoods both as recreation opportunities as well as organizing elements and focal points for the communities.

B. Building Design

1. No more than 40% of the horizontal dimension of the front of a primary residential structure may consist of an uninterrupted wall or garage door.

2. With the exception of apartments and ancillary dwelling units, every residential structure shall include primary entrances that are visible and accessible from the street and shall have a pedestrian path or walkway from the primary entrance to the sidewalk.
3. The same front façade for detached, single-family units may not be repeated more than five (5) times within one (1) block length for both sides of any street and shall be separated by at least two (2) lots with different facades.
4. Front loaded garages for detached, single-family units shall be recessed a minimum of eight (8) feet from the primary façade of the structure. Front porches are not considered part of the primary structure.

5. Garages for detached or attached housing, on lots less than 50 feet wide, shall be placed at the rear of the property and accessed by alley or side yard driveway.

6. Garages for multi-family dwellings shall be to the rear of the residential building.
7. Lots 50^{\prime} or less in width must include a front porch.
8. Minimum porch width is 8^{\prime} and shall cover a minimum of $1 / 3$ of the front building façade.
C. Development Block and Lots, except for Conservation Neighborhoods
9. Maximum block length of 600', measured to between two intersection centerlines.

10. Lots 50^{\prime} or less in width must be accessed from an alley.
11. Lot sizes should vary within each block to promote variety and diversity of housing.
D. Setbacks
12. Setback shall be per specified applicable zoning category unless otherwise noted.
13. Front yard setback may be reduced to 12^{\prime} with the use of front porches.
14. Rear yard setback may be reduced to 10 ' for detached garage.
15. Multi-family dwellings front yard setback may be reduced to 12^{\prime} when facing a public right of way and on street parking is provided.
E. Street Design
16. Roadway connections or stub-outs shall be provided between adjacent parcels to enhance connectivity between neighborhoods. Where a site is constrained due to environmental conditions, this requirement may be waived.
17. Cul-de-sacs, T-turnarounds or dead end streets are prohibited unless constrained by environmental conditions. Where cul-de-sacs, T-turnarounds or dead end streets are permitted, pedestrian and bicycle connectivity to the adjacent block(s) shall be provided.
18. All streets shall be in the form of a gridded or curvilinear gridded street network to promote multiple route choices, reduce the distance between uses and to encourage walking and biking.
19. All streets shall incorporate multi-modal facilities accommodating pedestrians, cyclists, automobiles and, where available, transit.
20. Refer to Cross Sections 3, 4, 5, 6 \& 7 for typical road cross sections for Neighborhood districts.
F. Alleys
21. Alleys are required for any block containing any lots with a width of fifty (50) feet or less.
22. Alleys are required for all lots facing a public park or civic use.

G. Parks and Open Space

1. Neighborhoods shall have public space that should be centrally located

2. Neighborhood parks shall have access from public right-of-way.
3. All residential neighborhoods shall provide a minimum of 5% of total net acres in the form of civic and/or active recreation space.
H. Landscape Guidelines
4. Frontage trees shall be planted at an average of forty (40) feet on center.
5. Landscape design should emphasize the practical use of plant material which reduce irrigation demands and minimize maintenance.
I. Stormwater
6. Stormwater management facilities should be designed as a neighborhood amenity.
7. A master stormwater plan should be designed for contiguous development parcels.
J. Schools
8. Schools should be centrally located and within walking or biking distance to residential neighborhoods.
[This page intentionally left blank]

CONSERVATION NEIGHBORHOOD GUIDELINES

A. General Description

Conservation Neighborhoods are located greater than $1 / 2$ mile from Town, Village and Neighborhood Centers and are typically located in more rural areas of the DSAP. They are subdivisions of clustered, single-family dwellings intended to:

- Establish a more efficient use of land and infrastructure, thereby reducing costs to taxpayers, residents and developers.
- Offer landowners alternatives to conventional, large-lot development and incentivize the conservation of natural resources.
- Create usable and accessible open space for use by neighborhood residents.
- Contribute to an overall, interconnected open space system which links individual neighborhoods to parks and other publicly owned lands.

B. Corresponding Escambia County Zoning District

1. VAG-1, VR-1, R-1, V-1, V-2, V-2A, V-5, SDD
C. Permitted Uses
2. Detached housing as well as those uses listed in the specific zoning category, schools, civic use, open space and parks.
D. Density
3. Minimum Density: none
4. Maximum Density: 3 DU/ Net Acre

E. Development Pattern and Design

1. The developed area of the subject site shall not exceed fifty (50) percent of the gross land area of the site.

Conventional Development

Cluster Development

2. Development shall be arranged in compact, neighborhood clusters with a maximum of 30 lots per cluster.
3. Sites may contain multiple neighborhood clusters provided they are separated by open space.
F. Open Space
4. At least fifty (50) percent of the gross land area of the proposed subdivision shall be designated as undivided, permanently protected open space, managed for either agriculture or conservation purposes, and on which the underlying development rights of the open space have been severed through a legal instrument that runs with the land.

5. Open space shall be arranged to preserve the function and integrity of on-site natural resources.
6. Open space shall consist of Primary and Secondary Conservation Areas, Improved Common Open Space, and/or Active Agricultural Areas.
a. Primary Conservation Areas - wetlands, watercourses, waterbodies and associated buffers, and lands conserved for the protection of flora, fauna and habitat. Such lands shall be managed as natural open space and maintained in a natural or restored condition.
b. Secondary Conservation Area - other selected areas which contain attractive spaces that are unique to the character of the site.
c. Improved Common Open Space - open space set aside for passive recreational purposes. These areas may contain accessory buildings and improvements necessary and appropriate for recreational and/or public uses.
d. Active Agricultural Areas - improved land used for bona fide agriculture uses subject to Best Management Practices of the Florida Department of Agriculture and Consumer Services including structures and facilities to support bona fide agricultural uses.
7. Up to $1 / 2$ of the required open space area may include stormwater facilities provided such facilities are designed as a community amenity.
8. Open space should be contiguous to greenways, trails, public parks or other open spaces on adjoining parcels in order to promote the creation of larger, interconnected open space system.
9. Required open space should be accessible from the subject sites buildable area, except areas that contain bona fide agricultural activities.
G. Streets
10. Refer to Cross Sections 2,3 and 7 for typical cross sections for Conservation Neighborhoods.
11. Roadways should follow existing contours to minimize the extent of cuts and fills.
[This page intentionally left blank]

SUBURBAN GARDEN GUIDELINES

A. General Description

Suburban Garden neighborhoods are located greater than $1 / 2$ mile from Town, Village and Neighborhood Centers. These neighborhoods are intended to provide a range of housing types with an emphasis on single-family dwellings. Small single-family detached and attached dwelling units may be developed and will require access from a rear alley. Blocks should be in the form of a curvilinear grid. Parks or other public space should serve as the focal point for these neighborhoods.

B. Corresponding Escambia County Zoning District

1. V-1, V-2, V-2A, V-5, SDD, R-2, R-3, V-3, V-4
C. Density
2. Minimum Density: $3 \mathrm{DU} /$ Net Acre
3. Maximum Density: 10 DU/Net Acre
4. The Suburban Garden district target density is $5 \mathrm{DU} /$ Net Acres.

Typical Block Pattern
D. Lot Size

1. Minimum lot size for single-family, detached dwelling may be 35 feet when alley access is provided.
E. Streets
2. Refer to Cross Sections $4,5,6$ and 7 for typical road cross sections for Suburban Garden.
3. Typical road cross-sections for Suburban Garden include:
4. Encourage on-street parking for visitors for residential lots less than 50 feet.

TRADITIONAL GARDEN GUIDELINES

A. General Description

Traditional Garden neighborhoods are typically located within $1 / 4$ to $1 / 2$ mile from Town, Village and Neighborhood Centers. These neighborhoods are intended to provide a transition between the Suburban Garden and Traditional Village districts. Housing includes a variety of attached and detached residential units with a higher mix of attached products. Blocks should be in the form of a more traditional grid. A curvilinear grid may be used where influenced by environmental conditions. Parks or other public space should serve as the focal point for these neighborhoods.

B. Corresponding Escambia County Zoning District

1. R-2, R-3, V-3, V-4, R-4
C. Density
2. Minimum Density: $5 \mathrm{DU} /$ Net Acres
3. Maximum Density: 15 DU/Net Acres
4. The Traditional Garden District target density is $7 \mathrm{DU} /$ Net Acres.

Typical Block Pattern
D. Streets

1. Refer to Cross Sections 4, 5, 6 and 7 for typical cross section for Traditional Garden Neighborhoods.
2. Encourage on-street parking for visitors for residential lots less than 50 feet.
3. Parking lots for multi-family units shall be located to the rear or side of the building.

TRADITIONAL VILLAGE GUIDELINES

A. General Description

Traditional Village neighborhoods are located adjacent to the Town and Village Centers. These neighborhoods are primarily comprised of attached, single family and multi-family residential dwellings. Roads are gridded, blocks are short and there is significant connectivity between blocks. Public spaces should serve as the focal point for these neighborhoods and may include civic buildings, community centers and active and/or passive recreation areas.

B. Corresponding Escambia County Zoning District

1. R-2, R-3, V-3, V-4, R-4
C. Density
2. Minimum Density: $7 \mathrm{DU} /$ Net Acres
3. Maximum Density: 20 DU/Net Acres
4. The Traditional Village district target density is $12 \mathrm{DU} /$ Net Acres.

D. Streets
5. Refer to Cross Sections 4,5,6 and 7 for typical street cross sections for Traditional Village.
6. Encourage on-street parking for visitors for residential lots less than 50 feet.
7. Parking lots for multi-family units shall be located to the rear or side of the building.

CENTERS GUIDELINES

A. General Description

Town, Village and Neighborhood Centers are urban areas within the DSAP which provide a concentrated mix of uses including commercial, office, civic and residential. Centers should be designed as community focal points and provide opportunities for people to shop, work, live and play. These Centers and the surrounding neighborhoods should be linked together by a highly interconnected, multimodal street network which includes transit, bicycle and pedestrian facilities. Centers should include a strong civic element, such as a community center or park, and should be linked to a regional open space system.

B. Building Design

1. All buildings within Centers shall be oriented to street rights-of-way and have minimal building setbacks. Buildings located on plazas, courtyards and parks and residential uses that front a portion of a parking area or are located interior to a block may be exempt from this requirement.
2. Covered walkways, terraces, balconies, awnings and street trees shall be encouraged to provide shaded walkways for pedestrians.
3. Doorways and windows shall be oriented toward a street or other public space to provide visual interest and to increase security.
4. All trash collection shall be located to the rear of buildings or within parking areas.
C. Development Pattern
5. Single occupant retail uses 50,000 square feet or greater shall provide separate liner buildings oriented toward a street on at least one additional side.

D. Setbacks
6. Building setbacks within Centers shall be reduced to create a strong urban form and encourage pedestrian activity.
7. Recommended building setbacks:
a. Front yard setback: 0 feet minimum, 15 feet maximum
b. Rear yard setback: 5 feet minimum
c. Side yard setback: 0 feet minimum
d. Corner lot side yard setback: 0 feet minimum, 10 feet maximum

8. Variations in the zero setback are permitted to provide greater accommodations for pedestrian circulation, sidewalks, enhanced entries, and dining areas.

E. Street Design

1. All Centers shall be designed around a gridded or curvilinear gridded street network with a maximum block length of six hundred feet (600^{\prime}), measured between two intersection centerlines.

Typical Bock Pattern

2. Street will be designed with an emphasis on pedestrian and bicycle circulation.
3. Traffic calming measures shall be included in the street design including but not limited to bump-outs, raised crosswalks at intersections, round-a-bouts and on-street parking. Speed bumps are discouraged.
4. All streets shall have sidewalks on both sides of the road right-of-way.
5. All pedestrian crosswalks should be clearly defined by distinct paving material.
6. All streetscapes within Centers shall require street furniture such as planters, trash receptacles and lighting.
7. Refer to Cross Sections 4, 5, 6 and 7 for typical road cross section for the Centers.

F. Bicycle Circulation

1. All primary roadways within Centers shall provide continuous bicycle facility connections between roadways.
2. Bicycle parking should be provided at a ratio of one (1) space per 3,000 square feet of retail or office use.
3. Bicycle parking shall be provided at all bus/transit stops.
G. Parking \& Circulation
4. Off-street parking shall be minimized, located at the rear or sides of buildings and visually screened in order to promote a walkable, pedestrian friendly environment.

5. Cross access shall be provided between adjacent parcels.
6. Parking structures fronting a primary street shall include ground floor retail and service uses with street access.
7. Pedestrian paths through parking facilities should be clearly delineated.
H. Transit
8. Transit stops should be located at each of the Centers as well as within the adjacent neighborhoods.
9. Transit shelters shall be required and should be consistent with the surrounding architectural theme.
10. Bus pull-ins should be considered during the design of arterial and collector roadway improvements.
I. Recreation and Open Space
11. Each Center shall be organized around a centrally located public park, plaza or civic facility.
12. Recreation and public space standards shall be defined in the respective district guidelines.
J. Civic Space
13. Civic buildings should be located at roadway intersections or at the termini of roads to provide a focal point and/or landmark within the Center.

14. Libraries, police and fire stations, meeting halls, churches, governmental and civic buildings, community centers, amphitheaters, public squares, plazas, parks, and courtyards may count towards meeting the recreation/public requirements for each Center.
K. Landscape Guidelines
15. Frontage trees shall be planted forty (40) feet on center.
16. Landscape design should emphasize the practical use of plant material which reduce irrigation demands and minimize maintenance.
L. Signage
17. Pole signs are prohibited. Ground sign shall be no higher than eight (8) feet from finished grade to the top of the sign, and shall tie in with the architectural style of the development.
M. Stormwater
18. A master stormwater plan should be designed for each Center.
19. Stormwater management facilities should be designed as an open space amenity, unfenced and curvilinear in form.
20. To preserve the urban character of the Centers, stormwater may be conveyed offsite or stored in underground vaults.

NEIGHBORHOOD CENTER GUIDELINES

A. General Description

Neighborhood Centers are small, mixed-use centers located central to residential neighborhoods. Neighborhood Centers are intended to provide a limited amount of services to the surrounding neighborhood and create an identity or focal point. Retail or office uses may be in the form of a single building or a cluster of small buildings. Parking should be limited to onstreet parking or to the rear of the building and screened from surrounding residential uses. Residential development may be located above ground floor retail or office. Neighborhood Centers include park facilities intended to provide a gathering place and focal point for surrounding neighborhoods.

B. Corresponding Escambia County Zoning Districts

1. $\mathrm{R}-5, \mathrm{R}-6$
C. Development Standards
2. Maximum Size:

Five net acres
2. Maximum FAR:
. 25
3. Maximum Gross Floor Area: 15,000 square feet
4. Minimum Residential Density: 5.0 DU/Ac

D. Land Use Mix

1. Residential Development:

Above commercial or office only
2. Commercial Development:
0% to 35% of net acres
3. Office Development:
0% to 20% of net acres
4. Recreation/Public:
20% of net acres (no maximum)
E. Streets and Parking

1. Refer to Cross Section 6 for typical street cross sections for Neighborhood Centers.
2. Parking should be provided on-street or to the rear of the buildings.

VILLAGE CENTER GUIDELINES

A. General Description

Village Centers are mid-sized, mixed-use centers intended to serve multiple residential neighborhoods. Village Centers should be located at the intersection of collector and arterial roadways. A typical Village Center may contain a grocery store, small retail services, restaurants, office space, civic building and a village green. Civic or park space should be designed to provide a focal point for the center while also serving the adjacent neighborhoods. Village Centers may contain higher density residential uses and may be mixed both horizontally and vertically with non-residential uses.

B. Corresponding Escambia County Zoning Districts

1. $\mathrm{R}-5, \mathrm{R}-6, \mathrm{C}-1, \mathrm{GMD}$
C. Development Standards
2. Maximum Size:
Forty (40) net acres
3. Maximum FAR:
. 50
4. Maximum Gross Floor Area:
200,000 square feet
5. Minimum Residential Density: 7.0 DU/Ac

D. Land Use Mix
6. Residential Development: 20% to 40% of net acres
7. Commercial Development: 15% to 30% of net acres
8. Office Development: 10% to 25% of net acres
9. Recreation/Public: 10% of net acres (no maximum)
E. Streets and Parking
10. Refer to Cross Section 4 for typical street cross sections for Village Centers.
11. Parking should be provided on-street or to the rear of the buildings.

TOWN CENTER GUIDELINES

A. General Description

The Town Center is centrally located within the sector plan area and contains the highest concentration of mixed-use development. The Town Center is intended to serve both the sector plan area, as well as surrounding communities. At its core is a traditional, mixed-use urban center built upon small blocks and gridded streets. Adjacent to this traditional core are areas to accommodate larger scale retail, office and residential use. The Town Center is structured around the pedestrian and utilizes plazas, greens and other public spaces to create an attractive walking environment.

B. Corresponding Escambia County Zoning Districts

1. R-5, R-6, C-1, GMD
C. Permitted Uses
2. The uses listed in the R-5, R-6, C-1 and C-2 zoning district except for :
distribution warehouse and mini warehouses, new and used car sales, truck, utility trailer, and RV rental service or facility, building trades or construction office and warehouses with outside on-site storage, marinas, adult entertainment uses and borrow pits and reclamation activities.
D. Development Standards
3. Maximum Size:
4. Maximum FAR:

500 net acres
3. Maximum Gross Floor Area:
1.0
4. Minimum Residential Density:

1,200,000 square feet
10.0 DU/Ac

E. Land Use Mix

1. Residential Development: 30% to 50% of net acres
2. Commercial Development: 20% to 40% of net acres
3. Office Development: 20% to 40% of net acres
4. Recreation/Public:
15% of net acres (no maximum)
F. Streets
5. Refer to Cross Section 4 for typical street cross sections for the Town Center.
6. Parking should be provided on-street or to the rear of the buildings.

REGIONAL EMPLOYMENT GUIDELINES

A. General Description

The intent of these districts is to support economic development and improve the jobs-tohousing balance in Escambia County. These are to be comprised primarily of industrial, distribution and office uses. Limited commercial and residential uses may also be permitted.

B. Corresponding Escambia County Zoning Districts

1. $\mathrm{C}-1, \mathrm{GMD}, \mathrm{C}-2, \mathrm{ID}-\mathrm{CP}, \mathrm{ID}-1, \mathrm{GBD}, \mathrm{GID}$
C. Development Standards
2. Northern Regional Employment District
a. Maximum Size:
400 net acres
a. Maximum FAR: . 50
b. Maximum Gross Floor Area:
2,500,000 square feet
3. Southern Regional Employment District
a. Maximum Size:
1,600 net acres
b. Maximum FAR:
. 50
c. Maximum Gross Floor Area:
$8,000,000$ square feet
D. Land Use Mix
4. Northern Regional Employment District
a. Residential Development:
0% to 10% of net acres
b. Commercial:
0% to 5\% of net acres
c. Office:
20% to 60% of net acres
d. Industrial:
e. Recreation/Park:

20\% to 60\% of net acres
5% of net acres (no maximum)
2. Southern Regional Employment District
a. Residential Development: 0% to 10% of net acres
b. Commercial: 0% to 5% of net acres
c. Office: 20% to 60% of net acres
d. Industrial: 20% to 60% of net acres
e. Recreation/Park: 5% of net acres (no maximum)
E. Development Pattern

1. To the greatest extent possible, development shall be clustered to preserve open space and protect significant natural resources.
2. Building form shall complement and preserve the natural landforms and minimize cut and fill to the greatest extent possible.
3. The primary entrance to buildings should be clearly designated and oriented towards a public right-of-way.
F. Residential and Commercial Standards
4. For residential development in the Regional Employment District refer to residential standards for the Traditional Village District.
5. For commercial development in the Regional Employment District refer to the Center Guidelines.
G. Parking
6. There should be no parking between the building and the road right-of-way. Minimum guest parking may be allowing in the front of the building, as long as it does not exceed one bay of parking and 50% of the building frontage, and should be adequately screened with vegetation from the street right of way.

7. Parking lots which accommodate a significant number of vehicles should be divided into series of smaller connected lots.
8. Site and building design should accommodate the pedestrian by creating designated walkways from parking areas to plazas and open space to the adjoining buildings. Bicycle connectivity should be accommodated from the street right of way to the building site.
9. Adjacent parcels should allow for interconnectivity between connected parking lots so vehicles can travel from one private parking lot to another without having to access the primary street.
10. Parking areas should be screened by buildings, screen wall and/or landscaping and should not dominate the street frontage.
11. Truck and service bay loading and service areas should not be visible from the primary roadway and separated from parking areas.
H. Loading and Service Areas
12. Loading and service areas shall be located at the rear or side of buildings and away from the main building entrance.
13. Loading and service areas shall be screened by buildings, landscaping or decorative fence or wall.
I. Storage and Equipment Areas
14. Exterior spaces for services, mechanical equipment and outside storage shall be screened and integrated with the overall site development and building character.
15. Recycling areas shall be accommodated within trash storage areas.
16. Rooftop equipment shall be completely screened from view.
J. Signage
17. Pole signs are prohibited.
18. Ground sign shall be no higher than eight (8) feet from finished grade to the top of the sign, and shall tie in with the architectural style of the development.
K. Lighting
19. All site lighting must be designed to minimize glare to adjacent properties or streets.
L. Landscape Guidelines
20. Street trees shall be planted at an average of forty (40) feet on center and shall be located in planter strips between the curb and sidewalks.
21. Landscape design should be limited to Florida-friendly plant materials which reduce irrigation demands.
M. Stormwater
22. A master stormwater plan should be designed for each Employment District.
23. Stormwater management facilities shall be designed as an open space amenity, unfenced and curvilinear in form.
N. Streets
24. Refer to Cross Sections 2 and 3 for typical street cross sections for Regional Employment Districts.

EXHIBIT 2-D

CIRCULATION PLAN

BEE LINE CORRIDOR

1. Bee Line Corridor

R.O.W. WIDTH

FACE OF CURB TO FACE OF CURB TRAFFIC LANES

TRAFFIC LANE WIDTH
PARKING LANES
PARKING LANE WIDTH
PARKWAY WIDTH
324^{\prime}
NO CURB
TWO WAY
12'
NO
NA
NA

MEDIAN WIDTH
SIDEWALK WIDTH
CURB RADIUS
BIKE LANES
BIKE LANE WIDTH
STRIPPING
STREET TREE SPACING

80'
NO SIDEWALK
NA
NONE
NA
YES
NA

2. Community Collector

R.O.W. WIDTH

FACE OF CURB TO FACE OF CURB
TRAFFIC LANES
TRAFFIC LANE WIDTH
PARKING LANES
PARKING LANE WIDTH
PARKWAY WIDTH
80^{\prime}
56
TWO WAY
11^{\prime} \& 12'
NO
NA
7

MEDIAN WIDTH
SIDEWALK WIDTH
CURB RADIUS
BIKE LANES
BIKE LANE WIDTH
STRIPPING
STREET TREE SPACING

NA
5'
25'
YES
5'
YES
40' O.C.

3. Community Collector

R.O.W. WIDTH

FACE OF CURB TO FACE OF CURB TRAFFIC LANES

TRAFFIC LANE WIDTH
PARKING LANES
PARKING LANE WIDTH
PARKWAY WIDTH

$94^{\prime}-100^{\prime}$	MEDIAN WIDTH	12^{\prime}
70^{\prime}	SIDEWALK WIDTH	$5^{\prime}-8^{\prime}$
TWO WAY	CURB RADIUS	25^{\prime}
10^{\prime}	BIKE LANES	YES
NONE	BIKE LANE WIDTH	5^{\prime}
NA	STRIPPING	YES
7^{\prime}	STREET TREE SPACING	40^{\prime} O.C.

VILLAGE-TOWN COLLECTOR

4. Village-Town Collector

R.O.W. WIDTH

FACE OF CURB TO FACE OF CURB TRAFFIC LANES
TRAFFIC LANE WIDTH
PARKING LANES
PARKING LANE WIDTH
PARKWAY OR TREE WELL WIDTH
$108^{\prime}-114^{\prime}$
84^{\prime}
TWO WAY
10^{\prime}
BOTH SIDES
7^{\prime}
7^{\prime}

MEDIAN WIDTH
SIDEWALK WIDTH
CURB RADIUS
BIKE LANES
BIKE LANE WIDTH 5'
STRIPPING
STREET TREE SPACING

YES
12^{\prime}
$5^{\prime}-8^{\prime}$
25'

YES
40' O.C.

REGIONAL ARTERIAL W/BRT

5. Regional Arterial w/ BRT

R.O.W. WIDTH	138^{\prime}	MEDIAN WIDTH	40^{\prime} W/ BRT
FACE OF CURB TO FACE OF CURB	104^{\prime}	SIDEWALK WIDTH	$8^{\prime} \& 12^{\prime}$
TRAFFIC LANES	TWO WAY	CURB RADIUS	25^{\prime}
TRAFFIC LANE WIDTH	$11^{\prime} \& 12^{\prime}$	BIKE LANES	YES
PARKING LANES	NONE	BIKE LANE WIDTH	5^{\prime}
PARKING LANE WIDTH	NA	STRIPPING	YES
PARKWAY WIDTH	7^{\prime}	STREET TREE SPACING	40^{\prime} O.C.
BUS RAPID TRANSPORT	YES		

NEIGHBORHOOD CENTER COLLECTOR
6. Neighborhood Center Collector
R.O.W. WIDTH

FACE OF CURB TO FACE OF CURB
TRAFFIC LANES
TRAFFIC LANE WIDTH
PARKING LANES
PARKING LANE WIDTH
PARKWAY WIDTH

72'
48'
TWO WAY
10'
BOTH SIDES
$7 \prime$
7

MEDIAN WIDTH
SIDEWALK WIDTH
CURB RADIUS
BIKE LANES
BIKE LANE WIDTH
STRIPPING
STREET TREE SPACING

NA
5'
25'
YES
5'
YES
20' - 40' O.C.

7. Neighborhood

R.O.W. WIDTH

FACE OF CURB TO FACE OF CURB TRAFFIC LANES

TRAFFIC LANE WIDTH
PARKING LANES
PARKING LANE WIDTH
PARKWAY WIDTH

62'
38'
TWO WAY
12'
NONE
NA
7

MEDIAN WIDTH	NA
SIDEWALK WIDTH	5^{\prime}
CURB RADIUS	25^{\prime}
BIKE LANES	YES
BIKE LANE WIDTH	5^{\prime}
STRIPPING	YES
STREET TREE SPACING	40^{\prime} O.C.

EXHIBIT 3

DETAILED PUBLIC FACILITIES PLAN

EXHIBIT 3-A TRANSPORATION ANALYSIS

TRANSPORTATION ELEMENT
 MID-WEST ESCAMBIA COUNTY SECTOR PLAN ESCAMBIA COUNTY, FLORIDA

Prepared for:
VHB Miller Sellen
225 E. Robinson Street, Suite 300
Orlando, Florida 32801

Prepared by:
Traffic Planning and Design, Inc.
535 Versailles Drive Maitland, Florida 32751 407-628-9955

July 2011

EXECUTIVE SUMMARY

This analysis was undertaken in support of the Mid-West Escambia County Sector Plan proposed by Escambia County. The total area within the DSAP is approximately 15,000 acres, with approximately 8,700 developable acres. The analysis was conducted for the 2011 Existing, 2016 Interim, and 2035 Buildout conditions. The findings are summarized as follows:

- The analysis of existing conditions reveals that some existing facilities are currently operating below the adopted LOS, including segments of US 29, Pine Forest Road, and Nine Mile Road.
- A review of the various short and long range transportation plans for the area shows that various transportation improvements are planned near the DSAP, including capacity expansions to US 29, Interstate 10 and Nine Mile Road.
- The DSAP development program includes more than 23,500 residential units and 12 million square feet of commercial and industrial uses. The total trip generation is estimated to be 371,000 daily trips at buildout. Approximately, 55% of the total trips generated within the DSAP area are projected to remain within the DSAP area and will not impact the external roadway network.
- The transportation element analysis identified roadway improvements recommended to support projected growth within the DSAP and the wider study area:

Area	2016		2035	
	Miles of Road	Lane-Miles of Capacity	Miles of Road	Lane-Miles of Capacity
	11.3	22.5	35.3	99.6
Outside DSAP	19.1	38.2	52.1	105.8

- The Beeline Corridor was analyzed as a limited access expressway and as a controlled access arterial. The corridor is projected to function adequately as a 4-lane expressway, providing capacity for DSAP traffic and sufficient excess capacity to attract traffic from other saturated corridors. Alternatively, a 6-lane arterial will provide similar capacity and movement of traffic as the expressway. If an arterial is constructed, friction from access and intersections should be controlled to maintain the throughput capacity of the arterial.

Escambia County Mid-West Sector Plan Project № 4249
 Page i

TABLE OF CONTENTS

Page
1.0 INTRODUCTION 1
2.0 EXISTING CONDITIONS ANALYSIS 4
2.1 Study Area 4
2.2 Roadway Inventory 4
2.3 Level of Service Standard 4
2.4 Existing Conditions 9
3.0 PROGRAMMED AND PLANNED IMRPOVEMENTS 14
3.1 Programmed Improvements 14
3.2 Planned Improvements 14
4.0 DEVELOPMENT TRIP ANALYSIS 16
4.1 Development Program 16
4.2 ITE Trip Generation Calculation 17
5.0 TRANSPORTATION MODEL 19
5.1 NWFRPM - 2016 Existing plus Committed (E+C) Model 19
5.2 Traffic Analysis Zone Modifications. 19
5.3 Socio-Economic Data Modifications 21
5.4 Roadway Network Modifications 21
5.5 Model Trip Generation Calculation. 21
6.0 INTERIM YEAR 2016 PROJECTED CONDITIONS 25
6.1 Roadway Conditions - Background Traffic. 25
6.2 Roadway Conditions - Total Traffic 29
6.3 2016 Roadway Capacity Needs. 29
7.02035 PROJECTED CONDITIONS 35
7.1 2035 Roadway Conditions - Background Traffic 35
7.2 2035 Roadway Conditions - Total Traffic 39
7.3 Beeline Corridor 39
7.42035 Roadway Capacity Needs 44
8.0 SUMMARY OF TRANSPORTATION NEEDS 47
SUMMARY OF FINDINGS 49
APPENDICES 50
APPENDIX A Traffic Volume Counts
APPENDIX B Growth Trends Analysis
APPENDIX C Planned and Programmed Improvements
APPENDIX D Detailed Development Program
APPENDIX E NWFRPM Trip Generation
APPENDIX F 2016 \& 2035 Model Plots
APPENDIX G Beeline Corridor Arterial AlternativeEscambia CountyMid-West Sector PlanProject № 4249Page ii

LIST OF TABLES

Page
Table 2.1 Roadway Inventory 7
Table 2.2 Existing Roadway Conditions 10
Table 2.3 Existing Roadway Deficiencies 12
Table 3.1 Planned Roadway Improvements 14
Table 4.1 Build-out Development Program 16
Table 4.2 5-Year Development Program 17
Table 4.3 Trip Generation - 5-Year Development 18
Table 4.4 Trip Generation - Buildout Development 18
Table 6.1 2016 Roadway Conditions - Background Traffic 26
Table 6.2 2016 Roadway Deficiencies - Background Traffic 28
Table 6.3 2016 Roadway Conditions - Total Traffic 30
Table 6.4 2016 Roadway Deficiencies - Total Traffic 32
Table 6.52016 DSAP Roadway Needs 34
Table 6.6 2016 Off-Site Roadway Needs 34
Table 7.1 2035 Roadway Conditions - Background Traffic 36
Table 7.2 2035 Roadway Deficiencies - Background Traffic 38
Table 7.3 2035 Roadway Conditions - Total Traffic 40
Table 7.42035 Roadway Deficiencies - Total Traffic 42
Table 7.52035 DSAP Roadway Needs 45
Table 7.62035 Off-Site Roadway Needs 46
Table 8.1 Summary of Transportation Needs 47
Table 8.2 DSAP Transportation Improvements 47
Table 8.3 Off-Site Transportation Improvements 48

Escambia County Mid-West Sector Plan Project № 4249 Page iii

LIST OF FIGURES

Page
Figure 1.1 Location Map 2
Figure 1.2 DSAP Aerial 3
Figure 2.1 Study Area Map 6
Figure 2.2 Existing Roadway Deficiencies 13
Figure 3.1 Programmed and Planned Improvements 15
Figure 5.1 Escambia DSAP TAZ Structure 20
Figure 5.2 Roadway Modifications (2016 Network) 22
Figure 5.3 Roadway Modifications (2035 Network) 23
Figure 6.1 2016 Roadway Deficiencies 33
Figure 7.12035 Roadway Deficiencies 43

Escambia County Mid-West Sector Plan

1.0 INTRODUCTION

This analysis was undertaken in support of the Mid-West Escambia County Sector Plan proposed by Escambia County. The Detailed Specific Area Plan (DSAP) is based on the Specific Area Plan area adopted by the County for the Mid-West Region. The area contemplated by the DSAP is planned to be the County's growth center with policies targeted to encourage the development of regional employment centers supported by residential and commercial development. The total area within the plan is approximately 15,000 acres, with approximately 8,700 developable acres. The general location and DSAP area is illustrated in Figure 1.1. Figure 1.2 provides an aerial view of the study area depicting existing transportation facilities within the DSAP area.

The Transportation Element documents the transportation needs to adequately support the development plan proposed in the DSAP. The Transportation Element identifies the road infrastructure network that is required to support the development plan at buildout, by testing the projected performance of the internal roadway network and assessing the impact of the plan on the external roadway infrastructure. The analysis establishes existing travel characteristics currently on the transportation roadway network, quantifies the project trip generation characteristics, and evaluates the future travel characteristics incorporating the potential impacts and road capacity needs of the DSAP for the 5-year Interim analysis period (2016) and for the buildout of the plan (2035). Based on the analysis, recommendations are developed for the delivery of transportation infrastructure in association with the development plan.

```
Escambia County Mid-West Sector Plan
Project № 4249
Page 1
```


2.0 EXISTING CONDITIONS ANALYSIS

The existing travel characteristics and traffic conditions were evaluated for the transportation network within the study area. The existing analysis establishes a baseline for analysis and informs the development of the projected conditions analysis and transportation needs requirements.

2.1 Study Area

The study area was determined based on the influence area of the proposed development, the existing transportation infrastructure, location of activity centers, and geographical and environmental constraints. Generally, the study area for the analysis can be characterized as a 300 square mile area geographically centered on the proposed DSAP area, bounded by the Florida-Alabama State Line to the west, CR 4 to the north, Santa Rosa County Line to the east and the City of Pensacola to the South. Figure 2.1 illustrates the roadway facilities incorporated within the study area.

2.2 Roadway Inventory

An inventory was prepared of existing major roadway facilities within the study area. The roadway inventory includes facility characteristics, such as roadway segmentation, facility type, area type, jurisdiction, number of lanes, level of service (LOS) standard, and capacity. For the purpose of this analysis, all service volumes and capacities were obtained from the FDOT's general capacity tables published in the 2009 Q/LOS Handbook. The adopted LOS standard was obtained from the latest LOS report published by Escambia County, which reflects the standards adopted in the County's comprehensive plan. The roadway inventory is provided in Table 2.1.

2.3 Level of Service Standard

Transportation professionals rate the performance of a roadway segment using LOS as the measure. LOS on a roadway segment relates the measured traffic volume to the segment's physical capacity. The LOS scale ranges from LOS A, representing low traffic density, high speed operation, to LOS F, representing high traffic density and volumes exceeding capacity, resulting in forced flow, stop-and-go operation. The LOS scale is expressed by volume thresholds established in the 2009 Quality/Level of Service Handbook published by the FDOT.

```
Escambia County Mid-West Sector Plan
Project № 4249
Page 4
```

Service levels are described according to the following definitions:

- Level of Service A: Represents free flow conditions, with low demand and high speed operation. Vehicles are able to maneuver freely along the roadway segment with minimal conflicts with other vehicles in the traffic stream.
- Level of Service B: Represents stable traffic flow conditions, with operating speeds and ability to maneuver between traffic lanes beginning to feel restricted by the surrounding traffic stream. Operating speeds remain relatively high.
- Level of Service C: Represents higher demand within stable flow conditions. Speeds and maneuverability are influenced by the surrounding traffic stream. Operating speeds are slightly lower than those achieved at LOS B conditions.
- Level of Service D: Represents traffic flow conditions approaching capacity. Operating speeds and freedom to maneuver become restricted by higher density traffic flow conditions.
- Level of Service E: Represents traffic flow conditions at or near capacity. Operating speeds are lower than those achieved at LOS D, and a slight disruption to traffic flow results in unstable operation.
- Level of Service F: Represents forced flow conditions. Traffic flow levels are lower than the capacity of the road because operating speeds fluctuate between stop and go condition.

Within the study area, most of the roadway segments have an adopted LOS standard of "D" and "E". Interstate 10 and Interstate 110, and all limited access facilities have an adopted LOS standard of " C ". The adopted LOS standard for each segment is listed in Table 2.1.

Escambia County Mid-West Sector Plan
Project № 4249
Page 5

Table 2.1
Roadway Inventory

Roadway	Segment	Area Type	Jurisdiction	State Road	Arterial Class	\# of Lanes	Level of Service Std	Daily Service Volume
Interstate 10	Alabama SL to Beeline Corridor	U	FDOT	Y	Fwy	4	C	59,800
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	U	FDOT	Y	Fwy	4	C	59,800
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	U	FDOT	Y	Fwy	4	C	59,800
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	U	FDOT	Y	Fwy	4	C	59,800
Interstate 10	Pensacola Blvd (US 29) to I-110/Davis Hwy	U	FDOT	Y	Fwy	6	C	90,500
Interstate 10	I-110/Davis Hwy to US 90	U	FDOT	Y	Fwy	4	C	59,800
Interstate 110	I-10 to Airport Blvd	U	FDOT	Y	Fwy	10	C	151,700
Interstate 110	Airport Blvd to Fairfield Dr	U	FDOT	Y	Fwy	8	C	120,100
Interstate 110	Fairfield Dr to Chase St	U	FDOT	Y	Fwy	6	C	90,500
US 29	CR 4 to SR 97	RU	FDOT	Y	UF	4	C	41,100
US 29	SR 97 to Molino Rd (CR 182)	T	FDOT	Y	UF	4	C	45,400
US 29	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	T	FDOT	Y	UF	4	C	45,400
US 29	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	T	FDOT	Y	UF	4	C	45,400
US 29	Quintette Rd (CR 184) to Well Line Rd	T	FDOT	Y	UF	4	C	45,400
US 29	Well Line Rd to Muscogee Rd	U	FDOT	Y	I	4	D	36,700
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	U	FDOT	Y	1	4	D	36,700
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	U	FDOT	Y	1	4	D	36,700
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to l-10	U	FDOT	Y	1	4	D	36,700
US 29/Pensacola Blvd	I-10 to W St	U	FDOT	Y	1	4	D	36,700
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	U	FDOT	Y	1	4	D	36,700
Molino Rd (CR 182)	CR 99 to US 29	RU	EC	N	UF	2	D	13,800
Barrineau Park Rd (CR 196)	CR 97 to Schifko Rd	RU	EC	N	UF	2	D	13,800
Barrineau Park Rd (CR 196)	Schifko Rd to US 29	RU	EC	N	UF	2	D	13,800
Barrineau Park Rd (CR 196)	US 29 to CR 95A	RU	EC	N	UF	2	D	13,800
CR 297A	Pine Forest Rd (SR 297) to CR 97	U	EC	N	L	2	E	14,850
CR 297A	CR 97 to Kingsfield Rd	U	EC	N	L	2	E	14,850
CR 297A	Kingsfield Rd to Muscogee Rd (CR 184)	U	EC	N	L	2	E	14,850
Jack's Branch Rd (CR97)	CR 297A to Kingsfield Rd	U	EC	N	L	2	E	14,850
Jack's Branch Rd (CR97)	Kingsfield Rd to Muscogee Rd	U	EC	N	L	2	E	14,850
Jack's Branch Rd (CR97)	Muscogee Rd to Power Blvd Ext.	T	EC	N	L	2	D	13,680
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	T	EC	N	L	2	D	13,680
Jack's Branch Rd (CR97)	River Annex Rd to Quintette Rd Ext.	T	EC	N	L	2	D	13,680
Jack's Branch Rd (CR97)	Quintette Rd. Ext. to Schifko Rd	T	EC	N	L	2	D	13,680
Jack's Branch Rd (CR97)	Schifko Rd to Barrineau Park Rd (CR196)	T	EC	N	L	2	D	13,680
CR 97/CR196	Barrineau Park Rd (CR196) to CR 99	T	EC	N	L	2	D	13,680
SR 97	US 29 TO CR 99	RU	FDOT	Y	UF	2	D	13,800
CR 99	CR 97 to CR 182	RU	FDOT	Y	UF	2	D	13,800
CR 99	CR 182 to CR 97A	U	EC	N	UF	2	D	22,200
Quintette Rd Ext.	Jack's Branch Rd to Beeline Corridor	U	EC	N	L	2	E	14,850
Quintette Rd Ext.	Beeline Corridor to N-S Rd	U	EC	N	L	2	E	14,850
Quintette Rd Ext.	N-S Rd to US 29	U	EC	N	L	2	E	14,850
Quintette Rd (CR 184)	US 29 to CR 95A	U	EC	N	L	2	D	14,850
Quintette Rd (CR 184)	CR 95A to County Line	U	EC	N	L	2	D	14,850
Muscogee Rd (CR 184)	Alabama St. Line to River Annex Rd	U	EC	N	L	2	E	14,850
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	T	EC	N	L	2	E	13,680
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	T	EC	N	L	2	E	13,680
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N-S Rd	U	EC	N	L	2	E	14,850
Muscogee Rd (CR 184)	N-S Rd to Jack's Branch Rd (S)	U	EC	N	L	2	E	14,850
Muscogee Rd (CR 184)	Jack's Branch Rd (S) to CR 297A	U	EC	N	L	2	E	14,850
Muscogee Rd (CR 184)	CR 297A to US 29	U	EC	N	L	2	E	14,850
Pine Forest Rd	Roberts Rd to Nine Mile Rd (Alt 90)	T	EC	N	L	2	E	13,680
Pine Forest Rd	Nine Mile Rd (Alt 90) to l-10	U	EC	N	I	3	D	17,325
Pine Forest Rd	I-10 to Mobile Hwy (US 90)	U	EC	N	I	4	D	36,700
Old Kingsfield Rd	Beulah (CR 99) to N-S Rd	U	EC	N	L	2	E	14,850
Old Kingsfield Rd	N-S Rd to Jack's Branch Rd (CR 97)	U	EC	N	L	2	E	14,850
Kingsfield Rd Ext.	Beulah (CR 99) to N-S Rd	U	EC	N	L	2	E	14,850
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	U	EC	N	L	2	E	14,850
Kingsfield Rd	Jack's Branch Rd (CR 97) to CR 297A	U	EC	N	L	2	E	14,850
Kingsfield Rd	CR 297A to US 29	U	EC	N	L	2	E	14,850
Kingsfield Rd	US 29 to SR 292/Chemstrand Rd	U	EC	N	L	2	E	14,850
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	U	EC	N	L	2	E	14,850
Beulah Rd (CR 99)	Muscogee Rd (CR 184) to Kingsfield Rd	U	EC	N	L	2	E	14,850
Beulah Rd (CR 99)	Kingsfield Rd to I-10	U	EC	N	L	2	E	14,850

Escambia County
Mid-West Sector Plan
Project № 4249
Page 7

Table 2.1 (Cont'd) Roadway Inventory

Roadway	Segment	Area Type	Jurisdiction	State Road	Arterial Class	\# of Lanes	Level of Service Std	Daily Service Volume
Beulah Rd (CR 99)	I-10 to Nine Mile Rd (Alt 90)	U	EC	N	L	2	E	14,850
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	U	EC	N	L	2	D	14,850
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	U	FDOT	Y	1	2	D	16,500
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to I-10	U	FDOT	Y	1	2	D	16,500
Nine Mile Rd (Alt 90)	I-10 to Pine Forest Rd (CR 297)	U	FDOT	Y	1	2	D	16,500
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	U	FDOT	Y	1	2	D	16,500
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	U	FDOT	Y	1	4	D	36,700
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	U	FDOT	Y	1	4	D	36,700
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy	U	FDOT	Y	1	4	D	36,700
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	U	FDOT	Y	UF	2	D	22,200
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	U	FDOT	Y	1	2	D	16,500
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	U	FDOT	Y	1	2	D	16,500
Mobile Hwy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	U	FDOT	Y	1	2	D	16,500
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	U	FDOT	Y	1	4	D	36,700
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	U	FDOT	Y	I	4	D	36,700
Mobile Hwy (US 90)	Edison Dr to Fairfield Dr	U	FDOT	Y	11	6	D	50,300
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	U	FDOT	Y	II	4	D	33,200
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	U	FDOT	Y	1	2	D	16,500
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	U	FDOT	Y	1	2	D	16,500
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	U	FDOT	Y	1	2	D	16,500
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	U	EC	N	L	2	D	14,850
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	U	FDOT	Y	1	4	D	36,700
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingsfield Rd	U	EC	N	L	2	E	14,850
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	U	EC	N	L	2	E	14,850
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	U	EC	N	L	2	E	14,850
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	U	EC	N	L	2	E	14,850
Palafox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)	U	EC	N	L	2	E	14,850
Palafox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	U	EC	N	L	2	E	14,850
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	U	EC	N	L	2	E	14,850
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	U	EC	N	L	2	E	14,850
Palafox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	U	EC	N	L	2	E	14,850
Palafox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingsfield Rd	U	EC	N	L	2	E	14,850
Palafox St (CR 95A)	Kingsfield Rd to Ten Mile Rd	U	EC	N	L	2	E	14,850
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)	U	EC	N	L	2	E	14,850
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	U	EC	N	L	2	E	14,850
Palafox St (CR 95A)	I-10 to Pensacola Blvd (US 29)	U	EC	N	L	2	E	14,850
Ten Mile Rd	Stefani Rd to US 29	U	EC	N	L	2	E	14,850
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	U	EC	N	L	2	E	14,850
Well Line Rd Ext.	Jack's Branch Rd to N-S Rd	U	EC	N	L	2	E	14,850
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	U	EC	N	L	2	E	14,850
Well Line Rd	Santa Rosa Rd to US 29	U	EC	N	L	2	D	14,850
Santa Rosa Rd	Muscogee Rd to Well Line Rd	U	EC	N	L	2	D	14,850
Beeline Corridor	US 29 to N-S Rd	U	FDOT	Y	Fwy	4	C	59,800
Beeline Corridor	N-S Rd to Quintette Rd Ext.	U	FDOT	Y	Fwy	4	C	59,800
Beeline Corridor	Quintette Rd Ext. to Jack's Branch Rd (CR 97)	U	FDOT	Y	Fwy	4	C	59,800
Beeline Corridor	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	U	FDOT	Y	Fwy	4	C	59,800
Beeline Corridor	Muscogee Rd (CR 184) to Kingsfield Rd Ext.	U	FDOT	Y	Fwy	4	C	59,800
Beeline Corridor	Kingsfield Rd Ext. to I-10	U	FDOT	Y	Fwy	4	C	59,800
N-S Rd	Barrineau Park Rd (CR 196) to Mathison Rd Ext.	U	EC	N	1	4	D	36,700
N-S Rd	Mathison Rd Ext. to Quintette Rd Ext.	U	EC	N	1	4	D	36,700
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	U	EC	N	1	4	D	36,700
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	U	EC	N	1	4	D	36,700
N-S Rd	Jack's Branch Rd (CR 97) to Kingsfield Rd	U	EC	N	1	4	D	36,700
N-S Rd	Kingsfield Rd to Jack's Branch Rd/Divine Farm	U	EC	N	1	4	D	36,700
Success Rd Ext.	Power Blvd Ext. to Well Line Rd Ext.	U	EC	N	L	4	E	33,030
Power Blvd Ext.	US 29 to N-S Rd	U	EC	N	L	4	E	33,030
Schifko Rd	Jack's Branch Rd (CR 97) to CR 196	U	EC	N	L	2	E	14,850
Mathison Rd Ext.	Schifko Rd to N-S Rd	U	EC	N	L	2	E	14,850
Mathison Rd Ext.	N-S Rd to US 29	U	EC	N	L	2	E	14,850
Area Type	Arterial Class		Jurisdiction				Source	
U = Urban	I = State Arterial with less than 2.0 intersections per mile		EC = Escambia County				FDOT Q/LOS Handbook	
$\mathrm{T}=$ Transitioning	II = State Arterial with 2.0 to 4.5 intersections per mile		FDOT = State of Florida DOT				Escambia County LOS Report	
RU = Rural Undeveloped	UF = Uninterrupted Flow Highway							

Escambia County
Mid-West Sector Plan
Project № 4249
Page 8

2.4 Existing Conditions

The analysis of existing traffic conditions was conducted using existing traffic volumes published by Escambia County and the Florida Department of Transportation (FDOT). The majority of the traffic volume counts were obtained in the year 2010. However, some traffic counts date back to 2007. The traffic volume counts are provided in Appendix A. Based on a review of historical growth rates for major facilities in the area, it was found that generally, traffic volumes within the study area have been decreasing or have not grown. The growth trends analysis sheets are provided in Appendix B. Therefore, it was determined that the use of available published traffic counts for the 2011 baseline is acceptable and reflective of existing travel conditions on the roadway network.

The analysis compares the daily traffic volume on each roadway segment to the segment's capacity at the adopted LOS standard to determine whether, currently, the facility operates at an acceptable LOS. Table 2.2 summarizes the capacity analysis for the existing conditions.

Escambia County Mid-West Sector Plan
Project № 4249
Page 9

Table 2.2
Existing Roadway Conditions

Roadway	Segment	$\begin{aligned} & \hline A \\ & \mathrm{I} \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \begin{array}{l} \text { of } \\ \text { Lns } \end{array} \\ & \hline \end{aligned}$	$\begin{array}{\|l} \hline \text { LOS } \\ \text { Std } \end{array}$	Capacity	Count Year	Existing Daily Volume Source	2011 Daily Volume	$\begin{array}{\|c} \hline \text { Existing } \\ \text { v/c } \end{array}$	$\begin{gathered} \text { Existing } \\ \text { Los } \end{gathered}$	Meets Std?
Interstate 10	Alabama SL to Beeline Corridor	U	4	C	59,800	2007	Escambia Co. LOS Report	23,019	0.38	B	Y
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	U	4	c	59,800	2007	Escambia Co. LOS Report	23,019	0.38	B	Y
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	U	4	c	59,800	2010	FDOT 2010 AADT Report	34,265	0.57	B	Y
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	U	4	c	59,800	2010	FDOT 2010 AADT Report	46,235	0.77	C	Y
Interstate 10	Pensacola Blvd (US 29) to l-110/Davis Hwy	U	6	c	90,500	2010	FDOT 2010 AADT Report	64,500	0.71	B	Y
Interstate 10	1-110/Davis Hwy to US 90	U	4	c	59,800	2010	FDOT 2010 AADT Report	45,000	0.75	C	Y
Interstate 110	1-10 to Airport Blvd	U	10	C	151,700	2010	FDOT 2010 AADT Report	62,000	0.41	B	Y
Interstate 110	Airport Blvd to Fairfield Dr	U	8	c	120,100	2010	FDOT 2010 AADT Report	55,539	0.46	B	Y
Interstate 110	Fairfield Dr to Chase St	U	6	c	90,500	2010	FDOT 2010 AADT Report	48,500	0.54	B	Y
US 29	CR 4 to SR 97	RU	4	c	41,100	2010	FDOT 2010 AADT Report	6,911	0.17	B	Y
US 29	SR 97 to Molino Rd (CR 182)	T	4	C	45,400	2010	FDOT 2010 AADT Report	13,700	0.30	B	Y
US 29	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	T	4	C	45,400	2010	FDOT 2010 AADT Report	13,700	0.30	B	Y
US 29	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	T	4	c	45,400	2010	FDOT 2010 AADT Report	13,700	0.30	B	Y
US 29	Quintette Rd (CR 184) to Well Line Rd	T	4	C	45,400	2010	FDOT 2010 AADT Report	13,700	0.30	B	Y
US 29	Well Line Rd to Muscogee Rd	U	4	D	36,700	2010	FDOT 2010 AADT Report	21,500	0.59	B	Y
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	U	4	D	36,700	2010	FDOT 2010 AADT Report	30,500	0.83	C	Y
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	U	4	D	36,700	2010	FDOT 2010 AADT Report	31,535	0.86	C	Y
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to l-10	U	4	D	36,700	2010	FDOT 2010 AADT Report	40,000	1.09	F	N
US 29/Pensacola Blvd	1-10 to W St	U	4	D	36,700	2010	FDOT 2010 AADT Report	40,000	1.09	F	N
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	U	4	D	36,700	2010	FDOT 2010 AADT Report	26,500	0.72	B	Y
Molino Rd (CR 182)	CR 99 to US 29	RU	2	D	13,800	2010	FDOT 2010 AADT Report	1,700	0.12	B	Y
Barrineau Park Rd (CR 196)	CR 97 to Schifko Rd	RU	2	D	13,800	2010	FDOT 2010 AADT Report	1,400	0.10	B	Y
Barrineau Park Rd (CR 196)	Schifko Rd to US 29	RU	2	D	13,800	2010	FDOT 2010 AADT Report	1,400	0.10	B	Y
Barrineau Park Rd (CR 196)	US 29 to CR 95A	RU	2	D	13,800	2010	FDOT 2010 AADT Report	1,400	0.10	B	Y
CR 297A	Pine Forest Rd (SR 297) to CR 97	U	2	E	14,850	2010	FDOT 2010 AADT Report	10,500	0.71	C	Y
CR 297A	CR 97 to Kingsfield Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	3,500	0.24	B	Y
CR 297A	Kingsfield Rd to Muscogee Rd (CR 184)	U	2	E	14,850	2010	FDOT 2010 AADT Report	3,500	0.24	B	Y
Jack's Branch Rd (CR97)	CR 297A to Kingsfield Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	2,400	0.16	B	Y
Jack's Branch Rd (CR97)	Kingsfield Rd to Muscogee Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	2,400	0.16	B	Y
Jack's Branch Rd (CR97)	Muscogee Rd to Power Blvd Ext.	T	2	D	13,680	2007	Escambia Co. LOS Report	2,450	0.18	B	Y
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	T	2	D	13,680	2007	Escambia Co. LOS Report	2,450	0.18	B	Y
Jack's Branch Rd (CR97)	River Annex Rd to Quintette Rd Ext.	T	2	D	13,680	2007	Escambia Co. LOS Report	2,450	0.18	B	Y
Jack's Branch Rd (CR97)	Quintette Rd. Ext. to Schifko Rd	T	2	D	13,680	2007	Escambia Co. LOS Report	2,450	0.18	B	Y
Jack's Branch Rd (CR97)	Schifko Rd to Barrineau Park Rd (CR196)	T	2	D	13,680	2007	Escambia Co. LOS Report	2,450	0.18	B	Y
CR 97/CR196	Barrineau Park Rd (CR196) to CR 99	T	2	D	13,680	2010	FDOT 2010 AADT Report	950	0.07	B	Y
SR 97	US 29 TO CR 99	RU	2	D	13,800	2010	FDOT 2010 AADT Report	5,600	0.41	C	Y
CR 99	CR 97 to CR 182	RU	2	D	13,800	2005	Escambia Co. LOS Report	921	0.07	B	Y
CR 99	CR 182 to CR 97A	U	2	D	22,200	2005	Escambia Co. LOS Report	921	0.04	B	Y
Quintette Rd (CR 184)	US 29 to CR 95A	U	2	D	14,850	2010	FDOT 2010 AADT Report	4,000	0.27	B	Y
Quintette Rd (CR 184)	CR 95A to County Line	U	2	D	14,850	2010	FDOT 2010 AADT Report	4,000	0.27	B	Y
Muscogee Rd (CR 184)	Alabama St. Line to River Annex Rd	U	2	E	14,850	2005	Escambia Co. LOS Report	2,803	0.19	B	Y
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	T	2	E	13,680	2010	FDOT 2010 AADT Report	3,100	0.23	B	Y
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	T	2	E	13,680	2010	FDOT 2010 AADT Report	3,100	0.23	B	Y
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N-S Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	6,200	0.42	B	Y
Muscogee Rd (CR 184)	N-S Rd to Jack's Branch Rd (S)	U	2	E	14,850	2010	FDOT 2010 AADT Report	6,200	0.42	B	Y
Muscogee Rd (CR 184)	Jack's Branch Rd (S) to CR 297A	U	2	E	14,850	2010	FDOT 2010 AADT Report	6,200	0.42	B	Y
Muscogee Rd (CR 184)	CR 297A to US 29	U	2	E	14,850	2010	FDOT 2010 AADT Report	9,900	0.67	C	Y
Pine Forest Rd	Roberts Rd to Nine Mile Rd (Alt 90)	T	2	E	13,680	2010	FDOT 2010 AADT Report	11,500	0.84	C	Y
Pine Forest Rd	Nine Mile Rd (Alt 90) to l-10	U	3	D	17,325	2010	FDOT 2010 AADT Report	23,500	1.36	F	N
Pine Forest Rd	1-10 to Mobile Hwy (US 90)	U	4	D	36,700	2010	FDOT 2010 AADT Report	29,000	0.79	B	Y
Old Kingsfield Rd	Beulah (CR 99) to N -S Rd	U	2	E	14,850	2005	Escambia Co. LOS Report	1,063	0.07	B	Y
Old Kingsfield Rd	N-S Rd to Jack's Branch Rd (CR 97)	U	2	E	14,850	2005	Escambia Co. LOS Report	1,063	0.07	B	Y
Kingssield Rd	Jack's Branch Rd (CR 97) to CR 297A	U	2	E	14,850	2010	FDOT 2010 AADT Report	1,800	0.12	B	Y
Kingssield Rd	CR 297A to US 29	U	2	E	14,850	2010	FDOT 2010 AADT Report	1,800	0.12	B	Y
Kingsfield Rd	US 29 to SR 292/Chemstrand Rd	U	2	E	14,850	2007	Escambia Co. LOS Report	5,300	0.36	B	Y

Escambia County
Mid-West Sector Plan
Project № 4249
Page 10

Table 2.2 (Cont'd)

Roadway	Segment	$\begin{aligned} & \hline \mathrm{A} \\ & \mathrm{~T} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LOS } \\ & \text { Std } \end{aligned}$	Capacity	Count Year	Existing Daily Volume Source	2011 Daily Volume	Existing VIC	Existing Los	Meets Std?
$\overline{\text { Beulah Rd (} \mathrm{CR} 99)}$	Muscogee Rd (CR 184) to Kingsfield Rd	U	2	E	14,850	2009	Escambia Co. LOS Report	3,5	0.24	B	Y
Beulah Rd (CR 99)	Kingsfield Rd to l-10	U	2	E	14,850	2009	Escambia Co. LOS Report	3,569	0.2	B	Y
Beulah Rd (CR 99)	I-10 to Nine Mile Rd (Alt 90)	U	2	E	14,850	2010	FDOT 2010 AADT Report	3,600	0.24	B	Y
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	U	2	D	14,850	2010	FDOT 2010 AADT Report	3,60	0.2	B	Y
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	U	2	D	16,500	2010	FDOT 2010 AADT Report	4,200	0.25	B	Y
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to I-10	U	2	D	16,500	2010	FDOT 2010 AADT Report	4,200	0.25	B	Y
Nine Mile Rd (Alt 90)	$1-10$ to Pine Forest Rd (CR 297)	U	2	D	16,500	2010	FDOT 2010 AADT Report	11,200	0.68	C	Y
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	U	2	D	16,500	2010	FDOT 2010 AADT Report	26,000	1.58	F	N
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	U	4	D	36,700	2010	FDOT 2010 AADT Report	34,500	0.94	C	Y
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	U	4	D	36,700	2010	FDOT 2010 AADT Report	35,500	0.97	D	Y
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy	U	4	D	36,700	2010	FDOT 2010 AADT Report	13,10	0.36	B	Y
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	U	2	D	22,200	2010	FDOT 2010 AADT Report	4,774	0.22	B	Y
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	U	2	D	16,500	2010	FDOT 2010 AADT Report	1,250	0.08	B	Y
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	U	2	D	16,500	2010	FDOT 2010 AADT Report	9,800	0.59	C	Y
Mobile Hwy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	U	2	D	16,500	2010	FDOT 2010 AADT Report	9,100	0.55	B	Y
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	U	4	D	36,700	2010	FDOT 2010 AADT Report	23,500	0.64	B	Y
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	U	4	D	36,700	2010	FDOT 2010 AADT Report	32,000	0.87	C	Y
Mobile Hwy (US 90)	Edison Dr to Fairfield Dr	U	6	D	50,300	2010	FDOT 2010 AADT Report	36,000	0.72	C	Y
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	U	4	D	33,200	2010	FDOT 2010 AADT Report	21,500	0.65	c	Y
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	U	2	D	16,500	2010	FDOT 2010 AADT Report	14,200	0.86	c	Y
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	U	2	D	16,500	2010	FDOT 2010 AADT Report	16,700	1.01	F	N
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	U	2	D	16,500	2010	FDOT 2010 AADT Report	18,700	1.13	F	N
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	U	2	D	14,850	2010	FDOT 2010 AADT Report	19,500	1.31	F	N
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	U	4	D	36,700	2010	FDOT 2010 AADT Report	27,500	0.75	B	Y
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingsfield Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	2,500	0.17	B	Y
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	13,000	0.88	C	Y
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	U	2	E	14,850	2010	FDOT 2010 AADT Report	13,000	0.88	C	Y
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	U	2	E	14,850	2010	FDOT 2010 AADT Report	8,500	0.57	B	Y
Palafox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)	U	2	E	14,850	2010	FDOT 2010 AADT Report	1,950	0.13	B	Y
Palafox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	U	2	E	14,850	2010	FDOT 2010 AADT Report	1,950	0.13	B	Y
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	U	2	E	14,850	2010	FDOT 2010 AADT Report	8,700	0.59	C	Y
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	U	2	E	14,850	2010	FDOT 2010 AADT Report	8,700	0.59	C	Y
Palafox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	U	2	E	14,850	2010	FDOT 2010 AADT Report	2,000	0.13	B	Y
Palatox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingsfield Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	8,700	0.59	C	Y
Palatox St (CR 95A)	Kingsfield Rd to Ten Mile Rd	U	2	E	14,850	2010	FDOT 2010 AADT Report	8,700	0.59	C	Y
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)	U	2	E	14,850	2010	FDOT 2010 AADT Report	9,100	0.61	c	Y
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	U	2	E	14,850	2010	FDOT 2010 AADT Report	11,500	0.77	C	Y
Palafox St (CR 95A)	$1-10$ to Pensacola Blvd (US 29)	U	2	E	14,850	2010	FDOT 2010 AADT Report	14,300	0.96	D	Y
Ten Mile Rd	Stefani Rd to US 29	U	2	E	14,850	2007	Escambia Co. LOS Report	3,600	0.24	B	Y
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	U	2	E	14,850	2009	Escambia Co. LOS Report	8,600	0.58	B	Y
Well Line Rd	Santa Rosa Rd to US 29	U	2	D	14,850	2009	Escambia Co. LOS Report	8,609	0.58	B	Y
Santa Rosa Rd	Muscogee Rd to Well Line Rd	U	2	D	14,850	2009	Escambia Co. LOS Report	8,609	0.58	B	Y

The existing conditions analysis reveals that currently the roadway segments listed in Table 2.3 operate at a deficient LOS:

Table 2.3
Existing Roadway Deficiencies

Roadway		\# of Lns	LOS Std	Existing LOS	Existing VIC
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to I-10	4	D	F	1.09
US 29/Pensacola Blvd	$\mathrm{I}-10$ to W St	4	D	F	1.09
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	F	1.36
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2	D	F	1.58
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	F	1.01
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	F	1.13
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	F	1.31

The existing deficiencies are further illustrated in Figure 2.2.

Escambia County
Mid-West Sector Plan
Project № 4249
Page 12

3.0 PROGRAMMED AND PLANNED IMRPOVEMENTS

The Florida-Alabama Transportation Planning Organization's (FATPO) Transportation Improvement Program (TIP), Escambia County's Capital Improvement Element (CIE), the Long Range Transportation Plan (LRTP), and the FDOT's Work Program were reviewed to identify any planned or programmed improvements to the existing transportation facilities in this area. Additionally, roadway improvements incorporated into the adopted 2035 Cost Feasible network of the Northwest Florida Regional Planning Model, were listed as planned improvements.

3.1 Programmed Improvements

Programmed improvements are those capital roadway improvements that are funded for construction within the first 3 years of the agency's TIP or the FDOT Work Program. No improvements are programmed in the study area within the next 3 years. However, the section of Interstate 10 from SR 291/Davis Highway to SR 10A/US 90 is funded for construction in year 5 of the TIP. Additionally, the County has set aside $\$ 6$ million to potentially fund a roadway improvement within the DSAP area.

3.2 Planned Improvements

Planned improvements are all capital roadway improvements planned within the study's horizon period of 2035. The planned improvements identified within the study area are listed in Table 3.1 and are illustrated in Figure 3.1. Supporting documentation and information is provided in Appendix C.

Table 3.1
Planned Roadway Improvements

Project Name	Limits	Description
FATPO Transportation Improvement Program (TIP) - FY 2010/11-2014/15		
Interstate 10	SR 291/Davis Hwy to SR 10A/US 90	Widen to 6 Lanes
FATPO 2035 Long Range Transportation Plan (LRTP) / Blueprint 2035		
US 29	Interstate 10 to 9 1/2 Mile Rd	Widen to 6 Lanes
Interstate 10	Escambia Bay Bridge to Avalon Blvd	Widen to 6 Lanes
Burgess Road (SR 742)	US 29 (SR 95) to Interstate 110 Overpass	Realign / Widen to 4 Lanes
Nine Mile Road (US 90A)	SR 297 (Pine Forest Rd) to US 29 (SR 95)	Widen to 4 Lanes
Nine Mile Road (US 90A)	Interstate 10 to SR 297 (Pine Forest Rd)	Widen to 4 Lanes
Pinestead-Longleaf Connector	SR 297 (Pine Forest Rd) to US 29 (SR 95)	Widen to 4 Lanes
Gulf Beach Highway (SR 292)	SR 172 (Blue Angel Pkwy) to Fairfiled Dr (SR 727)	Widen to 4 Lanes
Gulf Beach Highway (SR 292)	Fairfield Drive (SR 727) to Navy Blvd (SR 295)	Widen to 4 Lanes

Escambia County
Mid-West Sector Plan
Project № 4249
Page 14

4.0 DEVELOPMENT TRIP ANALYSIS

The densities, land uses, and development allocations within the DSAP area were translated into a proposed development program for use in the transportation analysis. The development program is based on planning estimates provided by the project team for the DSAP analysis.

4.1 Development Program

The development program for the approximately 8,700 developable acres of the DSAP study area includes a large mixture of land uses including regional employment, commercial retail and office, as well as a significant number of residential areas. The development program assumed for this analysis is based on reasonable density assumptions. Table 4.1 summarizes the total development program.

Table 4.1
Build-out Development Program

LAND USE	SIZE	UNITS
RESIDENTIAL	$\mathbf{2 3 , 5 2 0}$	DU
Detached Single Family	18,816	DU
Multi-Family / Apartments	4,704	DU
NON-RESIDENTIAL	$\mathbf{1 2 , 1 6 0 , 0 0 0}$	SF
Commercial / Retail	$1,660,000$	SF
Employment / Office	$3,875,000$	SF
Employment / Industrial	$6,625,000$	SF

A more detailed development program showing land uses by pod is included in Appendix \mathbf{D}.

Naturally, the DSAP area is expected to develop over time. For the purpose of the near term analysis, a 5-year development program was estimated as listed in Table 4.2.

Table 4.2
5-Year Development Program

LAND USE	SIZE	UNITS
RESIDENTIAL	$\mathbf{3 , 0 3 0}$	DU
Detached Single Family	2,424	DU
Multi-Family / Apartments	606	DU
Commercial / Retail	$\mathbf{1 , 0 0 0 , 0 0 0}$	SF
Employment / Office	1200,000	SF
Employment / Industrial	375,000	SF

4.2 ITE Trip Generation Calculation

The overall trip generation of the proposed development program was estimated using the rates and equations published by the Institute of Transportation Engineers (ITE) in the latest Trip Generation Report, $8^{\text {th }}$ Edition. The ITE trip generation calculation was used to determine the total projected trip generation of the DSAP area for comparison with the results obtained from the transportation model used for this analysis. The ITE trip generation analysis is summarized in Table 4.3 for the 5-year development program and in Table 4.4 for the buildout program.

It is evident that the DSAP area is estimated to generate 46,941 daily and 4,671 peak hour trips by the year 2016 and a total of 371,471 daily trips and 40,312 peak hour trips at buildout in the year 2035.

Escambia County
Mid-West Sector Plan
Project № 4249
Page 17

Table 4.3
Trip Generation-5-Year Development

Lande Use	$\begin{aligned} & \hline \text { ITE } \\ & \text { LUC } \end{aligned}$	Size	Units	Daily		PM Peak Hour			
				Formula ${ }^{(1)}$	Total	Formula ${ }^{(1)}$	Entering	Exiting	Total
Single Family Residential Homes	210	2,424	DU	$\operatorname{Ln}(\mathrm{T})=0.92 \operatorname{Ln}(\mathrm{X})+2.71$	19,530	$\operatorname{Ln}(\mathrm{T})=0.90 \operatorname{Ln}(\mathrm{X})+0.51$	1,167	685	1,852
Multi-Family Residential Apartments	220	606	DU	$\mathrm{T}=6.06(\mathrm{X})+123.56$	3,796	$\mathrm{T}=0.55(\mathrm{X})+17.65$	228	123	351
Commercial/Retail	820	500	KSF	$\operatorname{Ln}(\mathrm{T})=0.65 \operatorname{Ln}(\mathrm{X})+5.83$	19,332	$\operatorname{Ln}(\mathrm{T})=0.67 \operatorname{Ln}(\mathrm{X})+3.37$	916	954	1,870
General Office Space	710	125	KSF	$\operatorname{Ln}(\mathrm{T})=0.77 \mathrm{Ln}(\mathrm{X})+3.65$	1,584	$\mathrm{T}=1.12(\mathrm{X})+78.81$	37	182	219
Light Industrial	110	375	KSF	$\mathrm{T}=7.47(\mathrm{X})-101.92$	2,699	$\mathrm{T}=1.43(\mathrm{X})-157.36$	45	334	379
Total Trip Generation					46,941		2,393	2,278	4,671

(1) Trip Generation Formulas/Rates were obtained from the ITE Trip Generation, 8th Edition.

Table 4.4
Trip Generation - Buildout Development

Lande Use	$\begin{aligned} & \hline \text { ITE } \\ & \text { LUC } \end{aligned}$	Size	Units	Daily		PM Peak Hour			
				Rate ${ }^{(1)}$	Total	Rate ${ }^{(1)}$	Entering	Exiting	Total
Single Family Residential Homes	210	18,816	DU	T = 9.57(X)	180,069	T = 1.01(X)	11,973	7,031	19,004
Multi-Family Residential Apartments	220	4,704	DU	$\mathrm{T}=6.65(\mathrm{X})$	31,282	$\mathrm{T}=0.62(\mathrm{X})$	1,895	1,021	2,916
Commercial/Retail	820	1,660	KSF	$\mathrm{T}=42.94$ (X$)$	71,280	$\mathrm{T}=3.73$ (X)	3,034	3,158	6,192
General Office Space	710	3,875	KSF	$\mathrm{T}=11.01(\mathrm{X})$	42,664	$\mathrm{T}=1.49$ (X$)$	982	4,792	5,774
Light Industrial	110	6,625	KSF	$\mathrm{T}=6.97(\mathrm{X})$	46,176	$\mathrm{T}=0.97(\mathrm{X})$	771	5,655	6,426
Total Trip Generation					371,471		18,655	21,657	40,312

Notes:

(1) Trip Generation Formulas/Rates were obtained from the ITE Trip Generation, 8th Edition.

5.0 TRANSPORTATION MODEL

The latest adopted 2035 Northwest Florida Regional Planning Model (NWFRPM) was employed as the starting base model for this analysis. The adopted model reflects the long range transportation and land use assumptions as approved by the Florida-Alabama Transportation Planning Organization (FATPO) and the West Florida Regional Planning Council (WFRPC). In order to evaluate the transportation needs and impacts associated with the DSAP, transportation models reflecting the 2016 and 2035 future conditions were developed as described below.

5.1 NWFRPM - 2016 Existing plus Committed (E+C) Model

In order to conduct a 5-year development scenario, a 2016 model was developed for the NWFRPM. The 2016 model was developed by assuming the Existing plus Committed ($\mathrm{E}+\mathrm{C}$) network in place and interpolating socio-economic data between the adopted 2015 and 2035 socio-economic data sets. As such, the Base 2016 E+C scenario has essentially the same model network as the adopted 2015 E+C model but incorporates the interpolated socioeconomic data for the year 2016. This model was used to analyze the 5 -year development scenario as described hereafter.

5.2 Traffic Analysis Zone Modifications

The NWFRPM currently includes 1,850 Traffic Analysis Zones (TAZ) used to express the existing and projected development densities model-wide, of which some 400 are dummy zones. The DSAP boundary area is currently represented in the model by a total of 4 TAZs. To incorporate the proposed DSAP development program with sufficient detail, the existing TAZ structure within the DSAP boundary was revised to include a total of 47 TAZs. Dummy zones number 350 through 396 were utilized for this purpose. Figure 5.1 illustrates the modified TAZ boundaries for the DSAP. The modified TAZ structure was used for both the 2016 and 2035 analyses.

```
Escambia County Mid-West Sector Plan
Project № 4249
Page 19
```


Figure 5.1

5.3 Socio-Economic Data Modifications

The new TAZs inserted into the study area were populated with the corresponding development information to reflect the proposed development program. The conversion of development information to Socio-Economic data was completed using the variables presented below:

- Commercial/Retail 2.5 employees per 1,000 SF
- Office 4.0 employees per 1,000 SF
- Industrial 2.0 employees per $1,000 \mathrm{SF}$

5.4 Roadway Network Modifications

The roadway network was modified to include existing and proposed roadways within the DSAP boundary. The modifications to the $2016 \mathrm{E}+\mathrm{C}$ Network are illustrated in Figure 5.2. Modifications to the 2035 buildout model are illustrated in Figure 5.3.

5.5 Model Trip Generation Calculation

The socio-economic data previously discussed was used by the NWFRPM to generate TAZ traffic and distribute it throughout the model for the 2016 and build-out scenarios. The trip generation of the development was determined in each scenario and compared to the ITE calculation.

In the 2016 model, the 5 -year development program and the conversion factors presented in Section 5.3 were used to load socio-economic data into the following the TAZs: 350-355, 357358, 365-368 and 388-389. These TAZs represent the areas of the DSAP that are anticipated for initial development. Once the model was complete, the loaded network file (HWYLOAD_F16.NET) was utilized to calculate the sum of the centroid connector volumes for all of the development TAZs. The assignment matrix (VEHTRIPS_F16.NET) was also utilized to determine Intrazonal Trips within the individual TAZs of the development. These volumes were added to obtain the total trip generation of the development. The matrices are included in Appendix E.

Using the socio-economic data as previously described, the first iteration of the 2016 model produced a trip generation significantly lower than the ITE calculation. This can be a common occurrence in FSUTMS models as FSUTMS trip generation modules are based on socioeconomic inputs and are not consistent with ITE methodology. The 2016 socio-economic data

Escambia County
Mid-West Sector Plan
Project № 4249
Page 21

was factored up and rerun in order to obtain a model trip generation within 10% variance of the ITE trip generation. In the model's $3^{\text {rd }}$ iteration, the socio-economic data was factored by 1.50 to obtain a trip generation of 44,285 daily trips, which is within 6% variance of the ITE trip generation calculation of 46,941 daily trips.

The loaded network file was also used to determine the development's external trips by drawing a cordon line around the development. The external trips were calculated to be 31,008 daily trips, which yields an internal capture rate of 30% for the 5-year development program.

Similarly, the trip generation characteristics were calculated for the 2035 build-out scenarios. Socio-economic data, based on the build-out development program and conversion factors presented in Section 5.3, was loaded into the development TAZs (No. 350-396). Model trip generation volumes were calculated as 336,817 daily trips. This trip generation is within 10% variance of the ITE trip generation calculation of 371,471 daily trips. Therefore, no adjustment to the socio-economic data was necessary for the 2035 model. The external trips for 2035 were calculated to be 152,158 , which yields an internal capture rate of 55% for the build-out development program.

Plots of the final model runs illustrating the background and DSAP traffic volumes for the year 2016 and 2035 are included in Appendix F.

Escambia County Mid-West Sector Plan
Project № 4249
Page 24

6.0 INTERIM YEAR 2016 PROJECTED CONDITIONS

Projected roadway conditions were assessed to evaluate the capacity demand and impact of the proposed development within the DSAP in 2016. The 2016 NWFRPM described in Chapter 5 of the report was applied for this analysis. The analysis considers conditions for background traffic resulting from existing traffic and regional growth exterior to the DSAP area, as well as conditions with the traffic from the DSAP development applied to the roadway network.

6.1 Roadway Conditions - Background Traffic

The background traffic volumes on the transportation network were extracted from the NWFRPM model for each roadway segment within the analysis area. The projected background volumes were converted from Peak Season Weekly Average Daily Trip (PSWADT) using the Model Output Conversion Factor (MOCF) of 0.98 obtained from the FDOT's Florida Traffic Information DVD.

The 2016 background roadway volumes were compared to each segments service volumes and capacity to obtain a projected operating LOS for the segments. The analysis is summarized in Table 6.1. The results of the analysis reveal that in the year 2016 several roadway segments are projected to operate beyond their adopted LOS standard based on background volume projections. The deficient roadway segments are listed in Table 6.2.

Escambia County Mid-West Sector Plan
Project № 4249
Page 25

2016 Roadway Conditions - Background Traffic

Table 6.1 (Cont'd)
2016 Roadway Conditions - Background Traffic

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \text { LOS } \\ \text { Std } \end{array}$	Capacity	$\begin{gathered} 2016 \\ \text { Background } \\ \text { Volume } \end{gathered}$	2016 V/C	$\begin{aligned} & 2016 \\ & \text { LOS } \end{aligned}$	$\begin{aligned} & \text { Meets } \\ & \text { Std? } \end{aligned}$
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	2	E	14,850	182	0.01	B	Y
Kingsfield Rd	Jack's Branch Rd (CR 97) to CR 297A	2	E	14,850	669	0.05	B	Y
Kingsfield Rd	CR 297A to US 29	2	E	14,850	2,524	0.17	B	Y
Kingsfield Rd	US 29 to SR 292/Chemstrand Rd	2	E	14,850	4,425	0.30	B	Y
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	2	E	14,850	0	0.00	B	Y
Beulah Rd (CR 99)	Muscogee Rd (CR 184) to Kingsfield Rd	2	E	14,850	2,812	0.19	B	Y
Beulah Rd (CR 99)	Kingsfield Rd to l-10	2	E	14,850	2,939	0.20	B	Y
Beulah Rd (CR 99)	$1-10$ to Nine Mile Rd (Alt 90)	2	E	14,850	10,021	0.67	C	Y
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	2	D	14,850	3,513	0.24	B	Y
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	2	D	16,500	4,796	0.29	B	Y
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to l-10	2	D	16,500	15,343	0.93	C	Y
Nine Mile Rd (Alt 90)	$1-10$ to Pine Forest Rd (CR 297)	2	D	16,500	14,756	0.89	C	Y
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2	D	16,500	30,778	1.87	F	N
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	4	D	36,700	31,716	0.86	C	Y
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	36,700	37,702	1.03	F	N
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy	4	D	36,700	12,801	0.35	B	Y
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	2	D	22,200	5,805	0.26	B	Y
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	2	D	16,500	1,157	0.07	B	Y
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	16,500	4,328	0.26	B	Y
Mobile Hwy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	2	D	16,500	9,012	0.55	B	Y
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	36,700	35,586	0.97	D	Y
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	36,700	28,670	0.78	B	Y
Mobile Hwy (US 90)	Edison Dr to Fairifield Dr	6	D	50,300	31,969	0.64	c	Y
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	33,200	31,043	0.94	D	Y
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	16,500	14,813	0.90	C	Y
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	16,500	12,596	0.76	C	Y
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	16,500	15,880	0.96	D	Y
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	14,850	16,803	1.13	F	N
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	36,700	30,467	0.83	c	Y
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingsfield Rd	2	E	14,850	5,379	0.36	B	Y
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	6,907	0.47	B	Y
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	12,659	0.85	C	Y
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,211	0.49	B	Y
Palafox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)	2	E	14,850	1,454	0.10	B	Y
Palatox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	2	E	14,850	4,075	0.27	B	Y
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	2	E	14,850	3,953	0.27	B	Y
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	14,850	8,788	0.59	C	Y
Palafox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	2	E	14,850	4,463	0.30	B	Y
Palafox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingsfield Rd	2	E	14,850	2,499	0.17	B	Y
Palafox St (CR 95A)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	2,321	0.16	B	Y
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	10,504	0.71	C	Y
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	2	E	14,850	16,414	1.11	F	N
Palafox St (CR 95A)	1-10 to Pensacola Blvd (US 29)	2	E	14,850	10,687	0.72	C	Y
Ten Mile Rd	Stefani Rd to US 29	2	E	14,850	1,436	0.10	B	Y
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,050	0.47	B	Y
Well Line Rd Ext.	Jack's Branch Rd to N-S Rd	2	E	14,850	0	0.00	B	Y
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	14,850	0	0.00	B	Y
Well Line Rd	Santa Rosa Rd to US 29	2	D	14,850	315	0.02	B	Y
Santa Rosa Rd	Muscogee Rd to Well Line Rd	2	D	14,850	0	0.00	B	Y
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	2	D	16,500	319	0.02	B	Y
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	2	D	16,500	319	0.02	B	Y
$\mathrm{N}-\mathrm{SRd}$	Jack's Branch Rd (CR 97) to Kingsfield Rd	2	D	16,500	0	0.00	B	Y
N-S Rd	Kingsfield Rd to Jack's Branch Rd/Divine Farm	2	D	16,500	0	0.00	B	Y
Schifko Rd	Jack's Branch Rd (CR 97) to CR 196	2	E	14,850	861	0.06	B	Y

Table 6.2
2016 Roadway Deficiencies - Background Traffic

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{gathered} \text { LOS } \\ \text { Std } \end{gathered}$	$\begin{aligned} & 2016 \\ & \text { LOS } \end{aligned}$	$\begin{gathered} 2016 \\ \text { V/C } \end{gathered}$
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	D	1.01
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	F	1.00
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	F	1.17
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to I-10	4	D	F	1.09
US 29/Pensacola Blvd	I-10 to W St	4	D	F	1.09
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	F	1.58
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2	D	F	1.87
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	F	1.03
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	F	1.13
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	F	1.11

Escambia County
Mid-West Sector Plan
Project № 4249
Page 28

6.2 Roadway Conditions - Total Traffic

The roadway network was tested with the addition of traffic volumes generated by development within the DSAP boundary. The analysis detailed in Table 6.3 indicates that several roadway segments will be deficient, in addition to the segments determined to be deficient under background traffic volumes. Table 6.4 summarizes the deficient roadway segments under the proposed conditions in the year 2016. Figure 6.1 illustrates the deficient roadway segments under background and total traffic volumes for the year 2016.

6.32016 Roadway Capacity Needs

Based on the analysis of conditions in the year 2016, several roadways will require additional capacity to support the projected background growth of traffic as well as traffic generated by the DSAP development. Capacity needs were anticipated for deficient roadways with V/C ratios greater than 1.05.

The analysis reveals that the 2016 development program requires approximately 20 lane-miles of new or upgraded capacity to support the development program and to interconnect the DSAP development areas. The needed facilities are listed in Table 6.5 with the corresponding improvement, and recommended number of lanes.

Based on existing and projected conditions, various off-site facilities require capacity improvement in the year 2016. These improvements are required to support background growth as well as the additional traffic generated by the DSAP development. Table 6.6 summarizes the needed improvements with the DSAP's proportional demand of the recommended capacity improvement.

```
Escambia County Mid-West Sector Plan
Project № 4249
Page 29
```

2016 Roadway Conditions - Total Traffic

Table 6.3 (Cont'd)
2016 Roadway Conditions - Total Traffic

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{array}{\|c\|} \hline \text { LOS } \\ \text { Std } \end{array}$	Capacity	$\begin{gathered} 2016 \\ \text { Background } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2016 \\ \text { DSAP } \\ \text { Volume } \end{gathered}$	2016 Total Volume	2016 V/C	$\begin{aligned} & 2016 \\ & \text { LOS } \end{aligned}$	Meets Std?
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	2	E	14,850	182	2,297	2,479	0.17	B	Y
Kingssield Rd	Jack's Branch Rd (CR 97) to CR 297A	2	E	14,850	669	989	1,658	0.11	B	Y
Kingsfield Rd	CR 297A to US 29	2	E	14,850	2,524	952	3,476	0.23	B	Y
Kingsfield Rd	US 29 to SR 292/Chemstrand Rd	2	E	14,850	4,425	293	4,718	0.32	B	Y
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	2	E	14,850	0	0	0	0.00	B	Y
Beulah Rd (CR 99)	Muscogee Rd (CR 184) to Kingsfield Rd	2	E	14,850	2,812	1,969	4,781	0.32	B	Y
Beulah Rd (CR 99)	Kingsfield Rd to I-10	2	E	14,850	2,939	3,034	5,973	0.40	B	Y
Beulah Rd (CR 99)	$1-10$ to Nine Mile Rd (Alt 90)	2	E	14,850	10,021	2,228	12,249	0.82	C	Y
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	2	D	14,850	3,513	1,699	5,212	0.35	B	Y
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	2	D	16,500	4,796	89	4,885	0.30	B	Y
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to l-10	2	D	16,500	15,343	287	15,630	0.95	D	Y
Nine Mile Rd (Alt 90)	$1-10$ to Pine Forest Rd (CR 297)	2	D	16,500	14,756	278	15,034	0.91	C	Y
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2	D	16,500	30,778	769	31,547	1.91	F	N
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	4	D	36,700	31,716	2,401	34,117	0.93	c	Y
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	36,700	37,702	1,937	39,639	1.08	F	N
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy	4	D	36,700	12,801	175	12,976	0.35	B	Y
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	2	D	22,200	5,805	89	5,894	0.27	B	Y
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	2	D	16,500	1,157	0	1,157	0.07	B	Y
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	16,500	4,328	1,645	5,973	0.36	B	Y
Mobile Hwy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	2	D	16,500	9,012	589	9,601	0.58	C	Y
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	36,700	35,586	745	36,331	0.99	D	Y
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	36,700	28,670	647	29,317	0.80	C	Y
Mobile Hwy (US 90)	Edison Dr to Fairfield Dr	6	D	50,300	31,969	548	32,517	0.65	C	Y
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	33,200	31,043	51	31,094	0.94	D	Y
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	16,500	14,813	167	14,980	0.91	c	Y
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	16,500	12,596	750	13,346	0.81	C	Y
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	16,500	15,880	368	16,248	0.98	D	Y
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	14,850	16,803	15	16,818	1.13	F	N
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	36,700	30,467	27	30,494	0.83	C	Y
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingsfield Rd	2	E	14,850	5,379	27	5,406	0.36	B	Y
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	6,907	171	7,078	0.48	B	Y
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	12,659	0	12,659	0.85	C	Y
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,211	722	7,933	0.53	B	Y
Palafox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)	2	E	14,850	1,454	0	1,454	0.10	B	Y
Palafox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	2	E	14,850	4,075	0	4,075	0.27	B	Y
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	2	E	14,850	3,953	0	3,953	0.27	B	Y
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	14,850	8,788	640	9,428	0.63	C	Y
Palafox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	2	E	14,850	4,463	39	4,502	0.30	B	Y
Palafox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingsfield Rd	2	E	14,850	2,499	632	3,131	0.21	B	Y
Palafox St (CR 95A)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	2,321	594	2,915	0.20	B	Y
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	10,504	1,601	12,105	0.82	C	Y
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	2	E	14,850	16,414	887	17,301	1.17		N
Palafox St (CR 95A)	$1-10$ to Pensacola Blvd (US 29)	2	E	14,850	10,687	536	11,223	0.76	C	Y
Ten Mile Rd	Stefani Rd to US 29	2	E	14,850	1,436	152	1,588	0.11	B	Y
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,050	212	7,262	0.49	B	Y
Well Line Rd Ext.	Jack's Branch Rd to N-S Rd	2	E	14,850	0	3,829	3,829	0.26	B	Y
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	14,850	0	6,075	6,075	0.41	B	Y
Well Line Rd	Santa Rosa Rd to US 29	2	D	14,850	315	5,863	6,178	0.42	B	Y
Santa Rosa Rd	Muscogee Rd to Well Line Rd	2	D	14,850	0	0	0	0.00	B	Y
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	2	D	16,500	319	5,138	5,457	0.33	B	Y
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	2	D	16,500	319	5,074	5,393	0.33	B	Y
N-S Rd	Jack's Branch Rd (CR 97) to Kingsfield Rd	2	D	16,500	0	3,199	3,199	0.19	B	Y
N -S Rd	Kingsfield Rd to Jack's Branch Rd/Divine Farm	2	D	16,500	0	2,296	2,296	0.14	B	Y
Schifko Rd	Jack's Branch Rd (CR 97) to CR 196	2	E	14,850	861	687	1,548	0.10	B	Y
Mathison Rd Ext.	Schifko Rd to N-S Rd	2	E	14,850	0	0	0	0.00	B	Y
Mathison Rd Ext.	N-S Rd to US 29	2	E	14,850	0	0	0	0.00	B	Y

Table 6.4
2016 Roadway Deficiencies - Total Traffic

Roadway	Segment	$\begin{gathered} \text { \# of } \\ \text { Lns } \end{gathered}$	LOS Std	$\begin{aligned} & 2016 \\ & \text { LOS } \end{aligned}$	$\begin{gathered} 2016 \\ \text { V/C } \end{gathered}$
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	D	1.04
US 29	Well Line Rd to Muscogee Rd	4	D	F	1.03
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	F	1.33
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	F	1.39
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to l-10	4	D	F	1.23
US 29/Pensacola Blvd	I-10 to W St	4	D	F	1.16
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	F	1.72
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2	D	F	1.91
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	F	1.08
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	F	1.13
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	F	1.17

Escambia County
Mid-West Sector Plan
Project № 4249
Page 32

Table 6.5
2016 DSAP Roadway Needs

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{aligned} & \text { LOS } \\ & \text { Std } \end{aligned}$	Segment Length (mi)	Improvement Needs	Total Lane-Miles
Quintette Rd Ext.	Jack's Branch Rd to Beeline Corridor	2	E	0.70	Construct New 2 Lane Road	1.4
Quintette Rd Ext.	Beeline Corridor to N-S Rd	2	E	0.60	Construct New 2 Lane Road	1.2
Quintette Rd Ext.	N-S Rd to US 29	2	E	0.70	Construct New 2 Lane Road	1.4
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	2	E	0.75	Construct New 2 Lane Road	1.5
Well Line Rd Ext.	Jack's Branch Rd to N-S Rd	2	E	1.00	Construct New 2 Lane Road	2.0
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	1.10	Construct New 2 Lane Road	2.2
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	2	D	1.50	Construct New 2 Lane Road	3.0
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	2	D	1.50	Construct New 2 Lane Road	3.0
N-S Rd	Jack's Branch Rd (CR 97) to Kingsfield Rd	2	D	2.40	Construct New 2 Lane Road	4.8

Table 6.6
2016 Off-Site Roadway Needs

Roadway	Segment	\# of Lns	$\begin{gathered} \text { LOS } \\ \text { Std } \end{gathered}$	Segment Length (mi)	Improvement Needs	Total Lane-Miles	DSAP Share of Capacity
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	3.40	Widen Existing 4 Lanes to 6 Lanes	6.8	22\%
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	2.70	Widen Existing 4 Lanes to 6 Lanes	5.4	14\%
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to I-10	4	D	2.50	Widen Existing 4 Lanes to 6 Lanes	5.0	9\%
US 29/Pensacola Blvd	I-10 to W St	4	D	1.40	Widen Existing 4 Lanes to 6 Lanes	2.8	4\%
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	0.90	Widen Existing 3 Lanes to 4 Lanes	1.8	7\%
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2	D	2.15	Widen Existing 2 Lanes to 4 Lanes	4.3	2\%
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	2.45	Widen Existing 4 Lanes to 6 Lanes	4.9	4\%
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	1.40	Widen Existing 2 Lanes to 4 Lanes	2.8	0\%
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	2.20	Widen Existing 2 Lanes to 4 Lanes	4.4	3\%

Escambia County
Mid-West Sector Plan
Project № 4249
Page 34

7.02035 PROJECTED CONDITIONS

Projected roadway conditions were assessed to evaluate the capacity demand and impact of the proposed development within the DSAP in 2035, the analysis horizon year. The adopted 2035 NWFRPM, modified as described in Chapter 5 of the report, was applied for this analysis. The analysis considers conditions for background traffic resulting from existing traffic and regional growth exterior to the DSAP area, as well as conditions with the traffic from the DSAP development applied to the roadway network.

7.1 2035 Roadway Conditions - Background Traffic

The background traffic volumes on the transportation network were extracted from the NWFRPM model for each roadway segment within the analysis area. The projected background volumes were converted from Peak Season Weekly Average Daily Trip (PSWADT) using the Model Output Conversion Factor (MOCF) of 0.98 obtained from the FDOT's Florida Traffic Information DVD.

The 2035 background roadway volumes were compared to each segments service volumes and capacity to obtain a projected operating LOS for the segments. The analysis is summarized in Table 7.1. The results of the analysis reveal that in the year 2035 several roadway segments are projected to operate beyond their adopted LOS standard based on background volume projections. The deficient roadway segments are listed in Table 7.2.

Escambia County Mid-West Sector Plan
Project № 4249
Page 35

2035 Roadway Conditions - Background Traffic

Table 7.1 (Cont'd)
2035 Roadway Conditions - Background Traffic

Roadway	Segment	$\begin{gathered} \text { \# of } \\ \text { Lns } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { LOS } \\ \text { Std } \end{array}$	Capacity	$\begin{gathered} 2035 \\ \text { Background } \\ \text { Volume } \end{gathered}$	$2035 \mathrm{~V} / \mathrm{C}$	$\begin{aligned} & 2035 \\ & \text { Los } \end{aligned}$	$\begin{aligned} & \text { Meets } \\ & \text { Std? } \end{aligned}$
Beulah Rd (CR 99)	Muscogee Rd (CR 184) to Kingsfield Rd	2	E	14,850	1,933	0.13	B	Y
Beulah Rd (CR 99)	Kingsfield Rd to l-10	2	E	14,850	5,507	0.37	B	Y
Beulah Rd (CR 99)	$1-10$ to Nine Mile Rd (Alt 90)	2	E	14,850	5,215	0.35	B	Y
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	2	D	14,850	5,391	0.36	B	Y
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	2	D	16,500	7,197	0.44	B	Y
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to l-10	2	D	16,500	17,347	1.05	F	N
Nine Mile Rd (Alt 90)	$1-10$ to Pine Forest Rd (CR 297)		D	36,700	15,690	0.43	B	Y
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	4	D	36,700	25,273	0.69	B	Y
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	4	D	36,700	28,031	0.76	B	Y
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	36,700	34,271	0.93	C	Y
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy	4	D	36,700	22,826	0.62	B	Y
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	2	D	22,200	7,703	0.35	B	Y
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	2	D	16,500	1,678	0.10	B	Y
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	16,500	14,969	0.91	c	Y
Mobile HWy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	2	D	16,500	11,669	0.71	C	Y
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	36,700	33,196	0.90	c	Y
Mobile HWy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	36,700	36,279	0.99	D	Y
Mobile Hwy (US 90)	Edison Dr to Fairifield Dr	6	D	50,300	40,916	0.81	D	Y
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	33,200	35,073	1.06	E	N
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	16,500	15,457	0.94	D	Y
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Sautley Field Rd	2	D	16,500	13,264	0.80	c	
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	16,500	16,380	0.99	D	Y
Sautley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	14,850	14,569	0.98	D	Y
Michigan Ave (SR 296)	Mobile HWy (US 90) to US 29	4	D	36,700	38,994	1.06	F	N
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingssield Rd	2	E	14,850	6,262	0.42	B	Y
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	7,328	0.49	B	Y
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	14,502	0.98	D	Y
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	6,376	0.43	B	Y
Palatox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)	2	E	14,850	1,945	0.13	B	Y
Palatox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	2	E	14,850	3,848	0.26	B	Y
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	2	E	14,850	3,851	0.26	B	Y
Palatox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	14,850	11,786	0.79	C	Y
Palatox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	2	E	14,850	7,661	0.52	B	Y
Palafox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingsfield Rd	2	E	14,850	5,054	0.34	B	Y
Palafox St (CR 95A)	Kingstield Rd to Ten Mile Rd	2	E	14,850	7,257	0.49	B	Y
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	8,974	0.60	c	Y
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	2	E	14,850	15,933	1.07	F	N
Palafox St (CR 95A)	$1-10$ to Pensacola Blvd (US 29)	2	E	14,850	11,275	0.76	c	Y
Ten Mile Rd	Stefani Rd to US 29	2	E	14,850	2,882	0.19	B	Y
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,822	0.53	B	Y
Well Line Rd Ext.	Jack's Branch Rd to N-S Rd	2	E	14,850	36	0.00	B	Y
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	14,850	0	0.00	B	Y
Well Line Rd	Santa Rosa Rd to US 29	2	D	14,850	517	0.03	B	Y
Santa Rosa Rd	Muscogee Rd to Well Line Rd	2	D	14,850	284	0.02	B	Y
Beeline Corridor	US 29 to N -S Rd	4	c	59,800	4,856	0.08	B	Y
Beeline Corridor	N-S Rd to Quintette Rd Ext.	4	c	59,800	4,844	0.08	B	Y
Beeline Corridor	Quintette Rd Ext. to Jack's Branch Rd (CR 97)	4	c	59,800	4,844	0.08	B	Y
Beeline Corridor	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	4	c	59,800	5,304	0.09	B	Y
Beeline Corridor	Muscogee Rd (CR 184) to Kingssield Rd Ext.	4	c	59,800	6,737	0.11	B	Y
Beeline Corridor	Kingstield Rd Ext. to l-10	4	c	59,800	10,927	0.18	B	Y
N-SRd	Barrineau Park Rd (CR 196) to Mathison Rd Ext.	4	D	36,700	0	0.00	B	Y
N-SRd	Mathison Rd Ext. to Quintette Rd Ext.	4	D	36,700	12	0.00	B	Y
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	4	D	36,700	43	0.00	B	Y
N-SRd	Well Line Rd Ext. to Jack's Branch Rd	4	D	36,700	79	0.00	B	Y
N-Sd	Jack's Branch Rd (CR 97) to Kingsfield Rd	4	D	36,700	239	0.01	B	Y
N-SRd	Kingsfield Rd to Jack's Branch Rd/Divine Farm	4	D	36,700	376	0.01	B	Y
Success Rd Ext.	Power Blvd Ext. to Well Line Rd Ext.	4	E	33,030	0	0.00	B	Y
Power Blvd Ext.	US 29 to N -S Rd	4	E	33,030		0.00	B	Y
Schifko Rd	Jack's Branch Rd (CR 97) to CR 196	2	E	14,850	44	0.00	B	Y
Mathison Rd Ext.	Schifko Rd to N-S Rd	2	E	14,850	70	0.00	B	Y
Mathison Rd Ext.	N-S Rd to US 29	2	E	14,850	69	0.00	B	Y

Table 7.2
2035 Roadway Deficiencies - Background Traffic

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{gathered} \text { LOS } \\ \text { Std } \end{gathered}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{gathered} 2035 \\ \text { V/C } \end{gathered}$
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	D	1.03
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	F	1.03
US 29/Pensacola Blvd	I-10 to W St	4	D	F	1.19
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	F	1.19
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to I-10	2	D	F	1.05
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	E	1.06
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	F	1.06
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	F	1.07

Escambia County
Mid-West Sector Plan
Project № 4249
Page 38

7.2 2035 Roadway Conditions - Total Traffic

The roadway network was tested with the addition of traffic volumes generated by development within the DSAP boundary. The analysis detailed in Table 7.3 indicates that several roadway segments will be deficient, in addition to the segments determined to be deficient under background traffic volumes. Table 7.4 summarizes the deficient roadway segments under the proposed conditions in the year 2016. Figure 7.1 illustrates the deficient roadway segments under background and total traffic volumes for the year 2035.

7.3 Beeline Corridor

A major roadway corridor is currently contemplated through the DSAP to connect Interstate 10 in the south to US 29 in the north. The corridor will provide capacity for north south travel through the DSAP area and serve as the transportation backbone for this part of the County. Although the corridor is being contemplated as a possible limited access facility, an alternative analysis was conducted for a possible controlled access arterial. The limited access alternative provides a traditional expressway with grade separated interchanges and no interruptions to traffic on the mainline. The controlled access alternative is for a typical arterial with at grade intersections, where priority is for providing through traffic capacity with limited interruptions and friction from access and side street connections. As established by the Escambia County Comprehensive Plan, a limited access facility would be required to meet a LOS C standard, while the controlled access facility would be required to meet a LOS D standard. The detailed analysis results of the controlled access alternative are provided in Appendix G.

The analysis reveals that it is feasible to serve the projected capacity demands of the area with a controlled access facility. From a capacity perspective, it is evident that a four lane arterial will sufficiently accommodate projected traffic volumes on the corridor. However, a four lane facility would significantly increase the number of long trips on the remaining roadway network within the DSAP. Therefore, in order to maintain the facility's profile as an attractive alternative for longer trips, the controlled access roadway should provide six lanes of through traffic capacity. Furthermore, the Beeline Corridor is recommended to provide excess capacity in order to function as a viable and attractive alternative to the established US 29 corridor. Therefore, based on the analysis, it is recommended that the Beeline Corridor be considered for a 4-lane limited access facility or a 6-lane controlled access arterial.

Escambia County Mid-West Sector Plan
Project № 4249
Page 39

Table 7.3
2035 Roadway Conditions - Total Traffic

Roadway	Segment	$\begin{aligned} & \# \text { of } \\ & \text { Lns } \end{aligned}$	$\begin{array}{\|c\|c} \text { Los } \\ \text { Std } \end{array}$	Capacity	$\begin{gathered} \text { Background } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2035 \\ \text { DSAP } \\ \text { Dolume } \\ \hline \end{gathered}$	$\begin{gathered} 2035 \\ \text { Total } \\ \text { Volume } \\ \hline \end{gathered}$	$2035 \mathrm{~V} / \mathrm{C}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{aligned} & \text { Mets } \\ & \text { Std? } \end{aligned}$
Interstate 10	Alabama SL to Beeline Corridor	4	c	59,800	54,004	6,038	60,042	1.00	D	N
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	4	c	59,800	51,534	22,294	73,828	1.23	E	N
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	4	c	59,800	58,220	21,557	79,777	1.33	F	N
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	c	59,800	61,584	16,338	77,922	1.30	E	N
Interstate 10	Pensacola Blvd (US 29) to l-110/Davis Hwy	6	C	90,500	79,716	17,791	97,507	1.08	D	N
Interstate 10	1-110/Davis Hwy to US 90	6	c	90,500	75,520	2,499	78,019	0.86	C	Y
Interstate 110	$1-10$ to Airport Blvd	10	c	151,700	125,036	12,836	137,872	0.91	c	Y
Interstate 110	Airport Blvd to Fairifild Dr	8	c	120,100	88,102	6,314	94,416	0.79	c	Y
Interstate 110	Fairfield Dr to Chase St	6	c	90,500	74,213	5,206	79,419	0.88	c	Y
US 29	CR 4 to SR 97	4	C	41,100	12,969	7,097	20,066	0.49	B	Y
US 29	SR 97 to Molino Rd (CR 182)	4	C	45,400	16,952	8,958	25,910	0.57	B	Y
US 29	Molino Rd (CR 182) to Barineau Park Rd (CR 196)	4	c	45,400	19,581	12,292	31,873	0.70	C	Y
US 29	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	4	c	45,400	19,351	22,152	41,503	0.91	c	Y
US 29	Quintette Rd (CR 184) to Well Line Rd	4	c	45,400	19,044	31,115	50,159	1.10	D	N
US 29	Well Line Rd to Muscogee Rd	4	D	36,700	30,557	34,941	65,498	1.78	F	N
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	36,700	36,017	26,002	62,019	1.69	F	
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	36,700	37,689	22,957	60,646	1.65	F	N
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to $1-10$	6	D	55,300	51,092	13,857	64,949	1.17	F	N
US 29/Pensacola Blvd	l-10 to W St	4	D	36,700	43,656	8,870	52,526	1.43	F	N
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	4	D	36,700	34,316	4,794	39,110	1.07	F	N
Molino Rd (CR 182)	CR 99 to US 29	2	D	13,800	1,377	592	1,969	0.14	B	Y
Barrineau Park Rd (CR 196)	CR 97 to Schitko Rd	2	D	13,800	35	110	145	0.01	B	Y
Barrineau Park Rd (CR 196)	Schitko Rd to US 29	2	D	13,800	78	159	237	0.02	B	Y
Barrineau Park Rd (CR 196)	US 29 to CR 95A	2	D	13,800	366	1,099	1,465	0.11	B	Y
CR 297A	Pine Forest Rd (SR 297) to CR 97	2	E	14,850	5,640	11,836	17,476	1.18	F	N
CR 297A	CR 97 to Kingsfield Rd	2	E	14,850	3,827	1,214	5,041	0.34	B	Y
CR 297A	Kingsfield Rd to Muscogee Rd (CR 184)	2	E	14,850	5,590	1,556	7,146	0.48	B	Y
Jack's Branch Rd (CR97)	CR 297A to Kingsfield Rd	2	E	14,850	419	6,047	6,466	0.44	B	Y
Jack's Branch Rd (CR97)	Kingsfield Rd to Muscogee Rd	2	E	14,850	245	5,934	6,179	0.42	B	Y
Jack's Branch Rd (CR97)	Muscogee Rd to Power Blvd Ext.	2	D	13,680	324	7,472	7,796	0.57	B	Y
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	2	D	13,680	362	15,142	15,504	1.13	F	N
Jack's Branch Rd (CR97)	River Annex Rd to Quintette Rd Ext.	2	D	13,680	2,284	5,237	7,521	0.55	B	Y
Jack's Branch Rd (CR97)	Quintette Rd. Ext. to Schifko Rd	2	D	13,680	2,988	5,260	8,248	0.60	c	Y
Jack's Branch Rd (CR97)	Schifko Rd to Barrineau Park Rd (CR196)	2	D	13,680	2,286	4,339	6,625	0.48	B	Y
CR 97/CR196	Barrineau Park Rd (CR196) to CR 99	2	D	13,680	1,253	1,707	2,960	0.22	B	Y
SR 97	US 29 TO CR 99	2	D	13,800	6,032	1,861	7,893	0.57	c	Y
CR 99	CR 97 to CR 182	2	D	13,800	1,253	1,707	2,960	0.21	B	Y
CR 99	CR 182 to CR 97A	2	D	22,200	1,104	1,487	2,591	0.12	B	Y
Quintette Rd Ext.	Jack's Branch Rd to Beeline Corridor	2	E	14,850	703	3,306	4,009	0.27	B	Y
Quintette Rd Ext.	Beeline Corridor to N-S Rd	2	E	14,850	703	6,449	7,152	0.48	B	Y
Quintette Rd Ext.	N-S Rd to US 29	2	E	14,850	734	12,172	12,906	0.87	c	Y
Quintette Rd (CR 184)	US 29 to CR 95A	2	D	14,850	4,548	12,582	17,130	1.15	F	N
Quintette Rd (CR 184)	CR 95A to County Line	2	D	14,850	6,297	7,127	13,424	0.90	c	Y
Muscogee Rd (CR 184)	Alabama St. Line to River Annex Rd	2	E	14,850	1,454	4,610	6,064	0.41	B	Y
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	2	E	13,680	1,029	28,367	29,396	2.15	F	N
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	2	E	13,680	993	23,587	24,580	1.80	F	N
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N -S Rd	2	E	14,850	1,316	16,708	18,024	1.21	F	N
Muscogee Rd (CR 184)	N-S Rd to Jack's Branch Rd (S)	2	E	14,850	1,350	17,224	18,574	1.25	F	N
Muscogee Rd (CR 184)	Jack's Branch Rd (S) to CR 297A	2	E	14,850	1,106	13,261	14,367	0.97	D	Y
Muscogee Rd (CR 184)	CR 297A to US 29	2	E	14,850	6,488	9,142	15,630	1.05	F	N
Pine Forest Rd	Roberts Rd to Nine Mile Rd (Alt 90)	2	E	13,680	6,788	1,199	7,987	0.58	B	Y
Pine Forest Rd	Nine Mile Rd (Alt 90) to $1-10$	3	D	17,325	20,629	8,425	29,054	1.68	F	N
Pine Forest Rd	$1-10$ to Mobile Hwy (US 90)	4	D	36,700	24,926	10,650	35,576	0.97	D	Y
Old Kingsfield Rd	Beulah (CR 99) to N - S Rd	2	E	14,850	2,559	6,811	9,370	0.63	c	Y
Old Kingsfield Rd	N-S Rd to Jack's Branch Rd (CR 97)	2	E	14,850	1,967	639	2,606	0.18	B	Y
Kingstield Rd Ext.	Beulah (CR 99) to N -S Rd	2	E	14,850	555	12,938	13,493	0.91	c	Y
Kingssield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	2	E	14,850	530	7,481	8,011	0.54	B	Y
Kingsield Rd	Jack's Branch Rd (CR 97) to CR 297A	2	E	14,850	2,321	5,743	8,064	0.54	B	Y
Kingsfield Rd	CR 297A to US 29	2	E	14,850	5,554	6,238	11,792	0.79	c	Y
Kingsield Rd	US 29 to SR 292/Chemstrand Rd	2	E	14,850	5,458	2,330	7,788	0.52	B	Y
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	2	E	14,850	1,508	9,403	10,911	0.73	c	Y

Table 7.3 (Cont'd)

Roadway	Segment	$\left\|\begin{array}{l} \# \text { of } \\ \text { ns } \end{array}\right\|$	$\begin{array}{\|l\|} \hline \text { LOS } \\ \text { Std } \end{array}$	Capacity	$\begin{gathered} 2035 \\ \text { Background } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2035 \\ \text { DSAP } \\ \text { Dolume } \\ \hline \end{gathered}$	$\begin{aligned} & 2035 \\ & \text { Total } \end{aligned}$ Volume	$2035 \mathrm{~V} / \mathrm{C}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{aligned} & \text { Meets } \\ & \text { Std? } \end{aligned}$
Beulah Rd (CR 99)	Muscogee Rd (CR 184) to Kingsfield Rd	2	E	14,850	1,933	12,004	13,937	0.94	D	
Beulah Rd (CR 99)	Kingsfield Rd to $\mathrm{l}-10$	2	E	14,850	5,507	11,876	17,383	1.17	F	N
Beulah Rd (CR 99)	$1-10$ to Nine Mile Rd (Alt 90)	2	E	14,850	5,215	15,054	20,269	1.36	F	
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	2	D	14,850	5,391	8,893	14,284	0.96	D	Y
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	2	D	16,500	7,197	806	8,003	0.49	B	Y
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to l-10		D	16,500	17,347	1,180	18,527	1.12	F	N
Nine Mile Rd (Alt 90)	1-10 to Pine Forest Rd (CR 297)	4	D	36,700	15,690	1,513	17,20	0.47	B	Y
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29		D	36,700	25,273	4,781	30,054	0.82	c	
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	4	D	36,700	28,031	8,280	36,31	0.99	D	Y
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	36,700	34,271	5,360	39,631	1.08	F	N
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy		D	36,700	22,826	1,883	24,7	0.67	B	
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	2	D	22,200	7,703	806	8,509	0.38	c	Y
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	2	D	16,500	1,678	0	1,678	0.10	B	
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd		D	16,500	14,969	5,954	20,923	1.27	F	N
Mobile Hwy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	2	D	16,500	11,669	1,944	13,613	0.83	C	
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)		D	36,700	33,196	7,137	40,3	1.10	F	N
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	36,700	36,279	3,938	40,217	1.10	F	N
Mobile Hwy (US 90)	Edison Dr to Fairield Dr		D	50,300	40,916	2,850	43,766	0.87	D	
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	33,200	35,073	100	35,173	1.06	F	N
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	16,500	15,457	2,116	17,573	1.07	F	
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd		D	16,500	13,264	4,760	18,024	1.09	F	N
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	16,500	16,380	3,816	20,196	1.22	F	N
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	14,850	14,569	245	14,814	1.00	D	Y
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29		D	36,700	38,994	308	39,302	1.07	F	N
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingsfield Rd	2	E	14,850	6,262	85	6,347	0.43	B	
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	7,328	506	7,834	0.53	B	
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	14,502	219	14,721	0.99	D	Y
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	6,376	1,694	8,070	0.54	B	
Palafox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)		E	14,850	1,945	0	1,945	0.13	B	
Palafox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	2	E	14,850	3,848	2	3,850	0.26	B	Y
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)		E	14,850	3,851	152	4,003	0.27	B	
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	14,850	11,786	3,523	15,309	1.03	F	N
Palafox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	2	E	14,850	7,661	4,169	11,830	0.80	C	
Palafox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingstield Rd		E	14,850	5,054	3,300	8,354	0.56	B	
Palafox St (CR 95A)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	7,257	5,483	12,740	0.86	c	Y
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)		E	14,850	8,974	3,707	12,681	0.85	c	
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to -10	2	E	14,850	15,933	2,265	18,198	1.23	F	
Palafox St (CR 95A)	$1-10$ to Pensacola Blvd (US 29)	2	E	14,850	11,275	863	12,138	0.82	c	
Ten Mile Rd	Stefani Rd to US 29	2	E	14,850	2,882	559	3,441	0.23	B	Y
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,822	862	8,684	0.58	c	Y
Well Line Rd Ext.	Jack's Branch Rd to N -S Rd		E	14,850	36	12,042	12,078	0.81	c	Y
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	14,850	0	15,881	15,881	1.07	F	
Well Line Rd	Santa Rosa Rd to US 29	2	D	14,850	517	11,181	11,698	0.79	c	Y
Santa Rosa Rd	Muscogee Rd to Well Line Rd	2	D	14,850	284	5,532	5,816	0.39	B	
Beeline Corridor	US 29 to N-S Rd	4	C	59,800	4,856	12,966	17,822	0.30	B	Y
Beeline Corridor	N-S Rd to Quintette Rd Ext.		c	59,800	4.844	21,517	26,361	0.44	B	Y
Beeline Corridor	Quintette Rd Ext. to Jack's Branch Rd (CR 97)	4	c	59,800	4,844	21,517	26,361	0.44	B	Y
Beeline Corridor	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)		c	59,800	5,304	23,772	29,076	0.49	B	Y
Beeline Corridor	Muscogee Rd (CR 184) to Kingstield Rd Ext.		c	59,800	6,737	28,984	35,721	0.60	B	Y
Beeline Corridor	Kingsfield Rd Ext. to $\mathrm{O}-10$	4	c	59,800	10,927	28,332	39,259	0.66	B	Y
N-SRd	Barrineau Park Rd (CR 196) to Mathison Rd Ext.		D	36,700	0	4,772	4,772	0.13	B	Y
N-S Rd	Mathison Rd Ext. to Quintette Rd Ext.	4	D	36,700	12	10,473	10,485	0.29	B	
N -S Rd	Quintette Rd Ext. to Well Line Rd Ext.	4	D	36,700	43	16,639	16,882	0.45	B	Y
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	4	D	36,700	79	20,006	20,085	0.55	B	
N-S Rd	Jack's Branch Rd (CR 97) to Kingsfield Rd	4	D	36,700	239	13,842	14,081	0.38	B	Y
N -S Rd	Kingsfield Rd to Jack's Branch Rd/Divine Farm		D	36,700	376	11,210	11,586	0.32	B	Y
Success Rd Ext.	Power Blvd Ext. to Well Line Rd Ext.	4	E	33,030	0	18,208	18,208	0.55	B	Y
Power Blvd Ext.	US 29 to N-S Rd	4	E	33,030	0	19,320	19,320	0.58	B	Y
Schifko Rd	Jack's Branch Rd (CR 97) to CR 196	2	E	14,850	44	110	154	0.01	B	
Mathison Rd Ext.	Schitko Rd to N-S Rd	2	E	14,850	70	158	228	0.02	B	Y
Mathison Rd Ext.	N-S Rd to US 29	2	E	14,850	69	1,416	1,485	0.10	B	Y

Table 7.4
2035 Roadway Deficiencies - Total Traffic

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{gathered} \text { LOS } \\ \text { Std } \end{gathered}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{gathered} 2035 \\ \text { V/C } \end{gathered}$
Interstate 10	Alabama SL to Beeline Corridor	4	C	D	1.00
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	4	C	E	1.23
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	4	C	F	1.33
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	E	1.30
Interstate 10	Pensacola Blvd (US 29) to I-110/Davis Hwy	6	C	D	1.08
US 29	Quintette Rd (CR 184) to Well Line Rd	4	C	D	1.10
US 29	Well Line Rd to Muscogee Rd	4	D	F	1.78
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	F	1.69
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	F	1.65
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to I-10	6	D	F	1.17
US 29/Pensacola Blvd	I-10 to W St	4	D	F	1.43
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	4	D	F	1.07
CR 297A	Pine Forest Rd (SR 297) to CR 97	2	E	F	1.18
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	2	D	F	1.13
Quintette Rd (CR 184)	US 29 to CR 95A	2	D	F	1.15
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	2	E	F	2.15
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	2	E	F	1.80
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N-S Rd	2	E	F	1.21
Muscogee Rd (CR 184)	N-S Rd to Jack's Branch Rd (S)	2	E	F	1.25
Muscogee Rd (CR 184)	CR 297A to US 29	2	E	F	1.05
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	F	1.68
Beulah Rd (CR 99)	Kingsfield Rd to I-10	2	E	F	1.17
Beulah Rd (CR 99)	l-10 to Nine Mile Rd (Alt 90)	2	E	F	1.36
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to I-10	2	D	F	1.12
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	F	1.08
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	F	1.27
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	F	1.10
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	F	1.10
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	F	1.06
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	F	1.07
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	F	1.09
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	F	1.22
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	F	1.07
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	F	1.03
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	F	1.23
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	F	1.07

Escambia County
Mid-West Sector Plan
Project № 4249
Page 42

7.4 2035 Roadway Capacity Needs

Based on the analysis of conditions in the horizon year 2035, several roadways will require additional capacity to support the projected background growth in traffic as well as traffic generated by the DSAP development. Capacity needs were anticipated for deficient roadways with V/C ratios greater than 1.05.

The analysis reveals that the 2035 development program requires approximately 120 lane-miles of new or upgraded capacity to support the development program and to interconnect the DSAP development areas. The needed facilities are listed in Table 7.5 with the corresponding type of improvement.

Based on existing and projected conditions, various off-site facilities require capacity improvements in the year 2035. These improvements are required to support background growth as well as the additional traffic generated by the DSAP development. Table 7.6 summarizes the needed improvements with the DSAP's proportional demand of the recommended offsite capacity improvement.

Escambia County Mid-West Sector Plan
Project № 4249
Page 44

Table 7.5
2035 DSAP Roadway Needs

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{aligned} & \text { LOS } \\ & \text { Std } \end{aligned}$	Segment Length (mi)	Improvement Needs	Total Lane-Miles
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	2	D	0.50	Widen Existing 2 Lanes to 4 Lanes	1.0
Quintette Rd Ext.	Jack's Branch Rd to Beeline Corridor	2	E	0.70	Construct New 2 Lane Road	1.4
Quintette Rd Ext.	Beeline Corridor to N-S Rd	2	E	0.60	Construct New 2 Lane Road	1.2
Quintette Rd Ext.	N-S Rd to US 29	2	E	0.70	Construct New 2 Lane Road	1.4
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	2	E	0.65	Widen Existing 2 Lanes to 4 Lanes	1.3
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	2	E	1.50	Widen Existing 2 Lanes to 4 Lanes	3.0
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N-S Rd	2	E	0.20	Widen Existing 2 Lanes to 4 Lanes	0.4
Muscogee Rd (CR 184)	N-S Rd to Jack's Branch Rd (S)	2	E	0.20	Widen Existing 2 Lanes to 4 Lanes	0.4
Old Kingsfield Rd	Beulah (CR 99) to N-S Rd	2	E	1.20	Upgrade Existing 2 Lane Road	2.4
Old Kingsfield Rd	N-S Rd to Jack's Branch Rd (CR 97)	2	E	1.90	Upgrade Existing 2 Lane Road	3.8
Kingsfield Rd Ext.	Beulah (CR 99) to N-S Rd	2	E	1.50	Construct New 2 Lane Road	3.0
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	2	E	0.75	Construct New 2 Lane Road	1.5
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184	2	E	2.60	Construct New 2 Lane Road	5.2
Beulah Rd (CR 99)	Kingsfield Rd to I-10	2	E	0.20	Widen Existing 2 Lanes to 4 Lanes	0.4
Well Line Rd Ext.	Jack's Branch Rd to N-S Rd	2	E	1.00	Construct New 2 Lane Road	2.0
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	1.10	Widen 2 Lane Road to 4 Lanes	4.4
Beeline Corridor	US 29 to N-S Rd	4	C	0.70	Construct New 4 Lane Freeway	2.8
Beeline Corridor	N-S Rd to Quintette Rd Ext.	4	C	1.20	Construct New 4 Lane Freeway	4.8
Beeline Corridor	Quintette Rd Ext. to Jack's Branch Rd (CR 97)	4	C	1.50	Construct New 4 Lane Freeway	6.0
Beeline Corridor	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184	4	C	2.25	Construct New 4 Lane Freeway	9.0
Beeline Corridor	Muscogee Rd (CR 184) to Kingsfield Rd Ext.	4	C	1.25	Construct New 4 Lane Freeway	5.0
Beeline Corridor	Kingsfield Rd Ext. to I-10	4	C	1.00	Construct New 4 Lane Freeway	4.0
N-S Rd	Barrineau Park Rd (CR 196) to Mathison Rd Ext.	4	D	1.00	Construct New 4 Lane Road	4.0
N-S Rd	Mathison Rd Ext. to Quintette Rd Ext.	4	D	1.00	Construct New 4 Lane Road	4.0
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	4	D	1.50	Widen 2 Lane Road to 4 Lanes	6.0
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	4	D	1.50	Widen 2 Lane Road to 4 Lanes	6.0
N-S Rd	Jack's Branch Rd (CR 97) to Kingsfield Rd	4	D	2.40	Widen 2 Lane Road to 4 Lanes	9.6
N-S Rd	Kingsfield Rd to Jack's Branch Rd/Divine Farm	4	D	3.50	Construct New 4 Lane Road	14.0
Success Rd Ext.	Power Blvd Ext. to Well Line Rd Ext.	4	E	1.10	Construct New 4 Lane Road	4.4
Power Blvd Ext.	US 29 to N-S Rd	4	E	1.00	Construct New 4 Lane Road	4.0
Mathison Rd Ext.	Schifko Rd to N-S Rd	2	E	1.30	Construct New 2 Lane Road	2.6
Mathison Rd Ext.	N-S Rd to US 29	2	E	0.70	Construct New 2 Lane Road	1.4

Escambia County
Mid-West Sector Plan
Project № 4249
Page 45

Table 7.6
2035 Off-Site Roadway Needs

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{gathered} \text { LOS } \\ \text { Std } \end{gathered}$	Segment Length (mi)	Improvement Needs	Total Lane-Miles	DSAP Share of Capacity
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	4	C	3.50	Widen Existing 4 Lanes to 6 Lanes	7.0	25\%
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	4	C	1.50	Widen Existing 4 Lanes to 6 Lanes	3.0	24\%
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	3.10	Widen Existing 4 Lanes to 6 Lanes	6.2	18\%
Interstate 10	Pensacola Blvd (US 29) to I-110/Davis Hwy	6	C	2.20	Widen Existing 6 Lanes to 8 Lanes	4.4	15\%
US 29	Quintette Rd (CR 184) to Well Line Rd	4	C	2.50	Widen Existing 4 Lanes to 6 Lanes	5.0	46\%
US 29	Well Line Rd to Muscogee Rd	4	D	0.80	Widen Existing 4 Lanes to 8 Lanes	3.2	47\%
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	3.40	Widen Existing 4 Lanes to 8 Lanes	13.6	35\%
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	2.70	Widen Existing 4 Lanes to 8 Lanes	10.8	31\%
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to I-10	6	D	2.50	Widen Existing 6 Lanes to 8 Lanes	5.0	19\%
US 29/Pensacola Blvd	I-10 to W St	4	D	1.40	Widen Existing 4 Lanes to 6 Lanes	2.8	16\%
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	4	D	2.20	Widen Existing 4 Lanes to 6 Lanes	4.4	9\%
CR 297A	Pine Forest Rd (SR 297) to CR 97	2	E	1.40	Widen Existing 2 Lanes to 4 Lanes	2.8	36\%
Quintette Rd (CR 184)	US 29 to CR 95A	2	D	1.80	Widen Existing 2 Lanes to 4 Lanes	3.6	38\%
Muscogee Rd (CR 184)	CR 297A to US 29	2	E	0.75	Widen Existing 2 Lanes to 4 Lanes	1.5	28\%
Pine Forest Rd	Nine Mile Rd (Alt 90) to l-10	3	D	0.90	Widen Existing 3 Lanes to 4 Lanes	1.8	23\%
Beulah Rd (CR 99)	I-10 to Nine Mile Rd (Alt 90)	2	E	2.10	Widen Existing 2 Lanes to 4 Lanes	4.2	46\%
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to I-10	2	D	2.70	Widen Existing 2 Lanes to 4 Lanes	5.4	3\%
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	2.45	Widen Existing 4 Lanes to 6 Lanes	4.9	10\%
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	3.00	Widen Existing 2 Lanes to 4 Lanes	6.0	16\%
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	0.90	Widen Existing 4 Lanes to 6 Lanes	1.8	13\%
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	1.80	Widen Existing 4 Lanes to 6 Lanes	3.6	7\%
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	2.40	Widen Existing 4 Lanes to 6 Lanes	4.8	0\%
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	0.60	Widen Existing 2 Lanes to 4 Lanes	1.2	6\%
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	2.00	Widen Existing 2 Lanes to 4 Lanes	4.0	13\%
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	4.50	Widen Existing 2 Lanes to 4 Lanes	9.0	10\%
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	3.55	Widen Existing 4 Lanes to 6 Lanes	7.1	1\%
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	2.20	Widen Existing 2 Lanes to 4 Lanes	4.4	7\%

Escambia County
Mid-West Sector Plan
Project № 4249
Page 46

8.0 SUMMARY OF TRANSPORTATION NEEDS

The transportation element analysis identified roadway improvements recommended to support projected growth within the study area. Table 8.1 summarizes the improvements.

Table 8.1
Summary of Transportation Needs

Area	2016		2035	
	Miles of Road	Lane-Miles of Capacity	Miles of Road	Lane-Miles of Capacity
Within DSAP	11.3	22.5	35.3	99.6
Outside DSAP	19.1	38.2	52.1	105.8

The transportation needs within the DSAP are outlined in Table 8.2. It has been established that the Beeline Corridor may be constructed as a 4-lane limited access expressway. Alternatively, a 6-lane controlled access arterial will provide sufficient capacity to service the projected demand within the DSAP and from the overall transportation network.

Table 8.2
DSAP Transportation Improvements

Roadway	Segment	Length (mi)	Recommended Capacity Improvement	New Lane Miles
2016				
Quintette Rd Ext.	Jack's Branch Rd to US 29	2.0	Construct New 2 Lane Road	4.0
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	0.8	Construct New 2 Lane Road	1.5
Well Line Rd Ext.	Jack's Branch Rd to US 29	3.1	Construct New 2 Lane Road	6.2
N-S Rd	Quintette Rd Ext. to Kingsfield Rd	5.4	Construct New 2 Lane Road	10.8
2035				
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	0.50	Widen Existing 2 Lanes to 4 Lanes	1.0
Muscogee Rd (CR 184)	River Annex Rd to Jack's Branch Rd (S)	2.60	Widen Existing 2 Lanes to 4 Lanes	5.2
Old Kingsfield Rd	Beulah (CR 99) to N-S Rd	3.10	Upgrade Existing 2 Lane Road	6.2
Kingsfield Rd Ext.	Beulah (CR 99) to Jack's Branch Rd (CR 97)	2.30	Construct New 2 Lane Road	4.6
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	2.60	Upgrade/Construct 2 Lane Road	5.2
Beulah Rd (CR 99)	Kingsfield Rd to I-10	0.20	Widen Existing 2 Lanes to 4 Lanes	0.4
Well Line Rd Ext.	N-S Rd to US 29	2.10	Widen 2 Lane Road to 4 Lanes	4.2
Beeline Corridor	US 29 to I-10	7.90	Construct New 4 Lane Freeway	31.6
N-S Rd	Barrineau Park Rd (CR 196) to Quintette Rd Ext.	1.00	Construct New 4 Lane Road	4.0
	Quintette Rd Ext. to Kingsfield Rd	5.40	Widen 2 Lane Road to 4 Lanes	10.8
	Kingsfield Rd to Jack's Branch Rd/Divine Farm	3.50	Construct New 4 Lane Road	14.0
Success Rd Ext.	Power Blvd Ext. to Well Line Rd Ext.	1.10	Construct New 4 Lane Road	4.4
Power Blvd Ext.	US 29 to N-S Rd	1.00	Construct New 4 Lane Road	4.0
Mathison Rd Ext.	Schifko to US 29	2.00	Construct New 2 Lane Road	4.0

Escambia County
Mid-West Sector Plan
Project № 4249
Page 47

Transportation improvements required outside the DSAP boundary to support the DSAP and other growth in the County were identified based on a $1.05 \mathrm{v} / \mathrm{c}$ value threshold. Table 8.3 summarizes the recommended improvements and provides the share of the capacity projected to be consumed by traffic generated from DSAP development.

Table 8.3
Off-Site Transportation Improvements

Roadway	Segment	Length (mi)	Recommended Capacity Improvement	New Lane Miles	DSAP Avg Share of Capacity
2016					
US 29	Muscogee Rd (CR 184W) to W St	10.00	Widen Existing 4 Lanes to 6 Lanes	20.0	14\%
Pine Forest Rd	Nine Mile Rd (Alt 90) to l-10	0.90	Widen Existing 3 Lanes to 4 Lanes	1.8	7\%
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	2.15	Widen Existing 2 Lanes to 4 Lanes	4.3	2\%
	Chemstrand Rd (CR 749) to University Pkwy	2.45	Widen Existing 4 Lanes to 6 Lanes	4.9	4\%
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	1.40	Widen Existing 2 Lanes to 4 Lanes	2.8	0\%
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	2.20	Widen Existing 2 Lanes to 4 Lanes	4.4	3\%
2035					
Interstate 10	Beeline Corridor to I-110/Davis Hwy	10.30	Widen Existing 4 Lanes to 6 Lanes	20.60	20\%
US 29	Quintette Rd (CR 184) to Well Line Rd	2.50	Widen Existing 4 Lanes to 6 Lanes	5.0	46\%
	Well Line Rd to Muscogee Rd	0.80	Widen Existing 4 Lanes to 8 Lanes	3.2	47\%
	Muscogee Rd (CR 184W) to I-10	8.60	Widen Existing 6 Lanes to 8 Lanes	17.2	29\%
	W St to Massachusetts/Pace Blvd	2.20	Widen Existing 4 Lanes to 6 Lanes	4.4	9\%
CR 297A	Pine Forest Rd (SR 297) to CR 97	1.40	Widen Existing 2 Lanes to 4 Lanes	2.8	36\%
Quintette Rd (CR 184)	US 29 to CR 95A	1.80	Widen Existing 2 Lanes to 4 Lanes	3.6	38\%
Muscogee Rd (CR 184)	CR 297A to US 29	0.75	Widen Existing 2 Lanes to 4 Lanes	1.5	28\%
Beulah Rd (CR 99)	Kingsfield Rd to Nine Mile Rd (Alt 90)	2.30	Widen Existing 2 Lanes to 4 Lanes	4.6	45\%
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to I-10	2.70	Widen Existing 2 Lanes to 4 Lanes	5.4	3\%
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	3.00	Widen Existing 2 Lanes to 4 Lanes	6.0	16\%
	Pine Forest Rd (SR 297) to Edison Dr	2.70	Widen Existing 4 Lanes to 6 Lanes	5.4	9\%
	Fairfield Dr to Pace Rd	2.40	Widen Existing 4 Lanes to 6 Lanes	4.8	0\%
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to US 98	7.10	Widen Existing 2 Lanes to 4 Lanes	14.2	11\%
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	3.50	Widen Existing 4 Lanes to 6 Lanes	7.1	1\%

Escambia County
Mid-West Sector Plan
Project № 4249
Page 48

SUMMARY OF FINDINGS

This analysis was undertaken to assess the transportation needs of the proposed Escambia DSAP. The analysis was conducted for the 2011 Existing, 2016 Interim and 2035 Buildout conditions. The findings of the analysis are summarized as follows:

- The analysis of existing conditions reveals that some existing facilities are currently operating below the adopted LOS, including segments of US 29, Pine Forest Road, and Nine Mile Road.
- A review of the various short and long range transportation plans for the area shows that various transportation improvements are planned near the DSAP, including capacity expansions to US 29, Interstate 10 and Nine Mile Road.
- The DSAP development program includes more than 23,500 residential units and 12 million square feet of commercial and industrial uses. The total trip generation is estimated to be 371,000 daily trips at buildout. Approximately, 55% of the total trips generated within the DSAP area are projected to remain within the DSAP area and will not impact the external roadway network.
- The transportation element analysis identified roadway improvements recommended to support projected growth within the study area.

Area	2016		2035	
	Miles of Road	Lane-Miles of Capacity	Miles of Road	Lane-Miles of Capacity
Within DSAP	11.3	22.5	35.3	99.6
Outside DSAP	19.1	38.2	52.1	105.8

- The Beeline Corridor was analyzed as a limited access expressway and as a controlled access arterial. The corridor is projected to function adequately as a 4-lane expressway, providing capacity for DSAP traffic and sufficient excess capacity to attract traffic from other saturated corridors. Alternatively, a 6-lane arterial will provide similar capacity and movement of traffic as the expressway. If an arterial is constructed, friction from access and intersections should be controlled to maintain the throughput capacity of the arterial.

[^0]APPENDICES

APPENDIX A

Traffic Volume Counts

Road No.	On Street	Roadway Facility	Date Of Count	2-Way PM PH Counted Volume	Axle Factor	Seas. Factor	2-Way PM PH Fact. Vol.	Alloc. Trips	Total Trips	Rev. Serv. Vol.	2-Way PH Serv. Vol	\% Serv. Vol. Used	Avail. Trips	$\begin{gathered} \text { 1\% Serv. } \\ \text { Vol. } \end{gathered}$	$\begin{gathered} \text { 5\% Serv. } \\ \text { Vol. } \end{gathered}$	$\begin{gathered} 110 \% \\ \text { Serv. Vol. } \end{gathered}$	Hurricane Evac. Rt
(1)	(2)	(3)	(10)	(11)	(12)	(13)	(14)	(15)	(16)	(17)	(18)	(19)	(20)	(21)	(21)	(22)	(24)
City	12th Avenue	Fairfield Dr. to Bayou Blvd.	1/20/2009	2043	0.97	1.04	2061	0	2061		3120	60\%	1371	31	156	3432	No
City/Co.	12th Avenue / Tippin Avenue	Bayou Blvd. to Langley Ave.	1/20/2009	2224	0.97	1.04	2244	6	2250		3120	66\%	1182	31	156	3432	No
County	61st Avenue	Jackson St. to Tonawanda Dr.	5/19/2005	126	0.95	0.99	119	0	119		1480	7\%	1509	15	74	1628	No
County	61st Avenue	US 98 to Jackson St.	5/18/2005	124	0.95	1	118	0	118		1480	7\%	1510	15	74	1628	No
SR289	9th Avenue	Cervantes St. to Bayou Blvd.	2/26/2009	1704	0.98	0.99	1653	0	1653		3221	51\%	1568	32	161	3543	from SR295
SR289	9 9th Avenue	Chase St. to Cervantes St.	1/22/2009	1378	0.97	1.04	1390	0	1390		2955	43\%	1861	30	148	3251	No
SR289	9th Avenue	Langley Ave. to Creighton Rd.	3/4/09	2761	1	1	2761	17	2778		3110	89\%	332	31	156	3421	Yes
SR289	9th Avenue	Creighton Rd. to Olive Rd.	1/29/09	2332	0.99	1.03	2378	48	2426		3110	71\%	995	31	156	3421	NO
SR289	9th Avenue	Bayou Blvd. to Langley Ave	3/3/09	1676	1	1	1676	23	1699		3110	55\%	1411	31	156	3421	Yes
SR750	Airport Blvd.	Pensacola Blvd. to Davis Hwy.	1/13/2009	1855	0.97	1.03	1853	41	1894		2950	58\%	1351	30	148	3245	No
SR750	Airport Blvd.	Davis Hwy. to 12th Ave.	2/26/2009	1681	0.97	0.99	1614	8	1622		2950	50\%	1623	30	148	3245	No
County	Airport Blvd.	W Street to Pensacola Blvd.	1/13/2009	1086	0.97	1.03	1085	85	1170		2950	36\%	2075	30	148	3245	No
SR291	Alcaniz Street / MLK Jr. Dr. (SB)	Fairfield Dr. to Wright St.	5/10/2007	390	0.98	0.98	375	2	377		950	36\%	668	10	48	1045	No
City	Barrancas Avenue	Pace Blvd. to Garden St.	1/20/2009	1709	0.97	1.04	1724	40	1764		3120	51\%	1668	31	156	3432	No
SR292	Barrancas Avenue	Navy Blvd. to Pace Blvd.	1/20/09	2044	0.99	1.04	2105	285	2390		3390	70\%	1000	34	170	3729	Yes
CR293	Bauer Road	Sorrento Rd. to Lillian Hwy / US 98	2/11/2009	620	0.99	1.01	620	110	730		1420	47\%	832	14	71	1562	No
SR196	Bayfront Pkwy.	Tarragona St. to Gregory St.	2/5/2009	1643	0.99	1.02	1659	0	1659		3390	44\%	2070	34	170	3729	No
SR296	Bayou Blvd.	9th Ave. to 12th Ave.	5/28/2008	1950	0.99	0.98	1892	10	1902		3270	58\%	1368	33	164	3597	YES
SR296	Bayou Blva. / Perry Avenue	12th Ave. to Cervantes St.	4/8/2008	1003	0.98	0.98	963	5	968		1610	60\%	642	16	81	1771	YES
County	Bellview Road	Blue Angel Pkwy. to Mobile Hwy.	2/3/2009	110	0.98	1.02	110	0	110		1480	7\%	1518	15	74	1628	No
CR99	Beulah Road	Nine Mile Rd. to Muscogee Rd.	1/20/2009	326	1	1.04	339	193	532		1400	35\%	1008	14	70	1540	No
CR99	Beulah Road	Mobile Hwy. to Nine Mile Rd.	6/3/2005	234	0.99	1	232	82	314		1390	21\%	1215	14	70	1529	No
CR99	3eulah Road / Hurst Hammock Rc	Perdido River to Mobile Hwy.	5/19/2005	52	0.99	1	51	27	78		1390	5\%	1451	14	70	1529	No
SR173	Blue Angel Pkwy.	of Sorrento (end of 4 lane) to US98	1/21/2009	1513	0.98	1.04	1542	234	1776		2320	77\%	544	23	116	2552	YES
SR173	Blue Angel Pkwy.	IAS to N . of Sorrento (end of 4 lane)	5/21/2007	897	0.97	0.98	853	217	1070		3410	29\%	2681	34	171	3751	No
SR173	Blue Angel Pkwy.	US 98 to Saufley Field Rd.*	2/23/09	1621	0.99	1	1605	205	1810	AT	1900	95\%	90	19	95	2090	Yes
SR173	Blue Angel Pkwy.	Saufley Field Rd. to Pine Forest Rd.	3/11/09	1314	0.99	1	1301	65	1366		1560	88\%	194	16	78	1716	Yes
SR296	Brent Lane	Rawson Lane to Davis Hwy	2/15/10	3353	0.99	1.01	3353	15	3368	AT	4240	79\%	872	42	212	4664	Yes
SR296	Brent Lane	Pensacola Blvd. to Rawson Lane	1/13/09	2589	0.99	1	2563	1	2564	AT	3340	77\%	776	33	167	3674	Yes
SR296	Brent Lane	Davis Hwy. to 9th Avenue	5/28/08	1950	0.99	0.99	1911	57	1968	AT	3390	58\%	1422	34	170	3729	Yes
County	Bronson Road	Lillian Hwy. (E) to Lillian Hwy. (W)	5/18/2005	11	0.99	1	11	0	11		1390	1\%	1518	14	70	1529	No
SR742	Burgess Road	Pensacola Blvd. to Davis Hwy.	4/30/2008	784	0.98	0.98	753	57	810		1560	47\%	906	16	78	1716	No
SR742	Burgess Road / Lanier Drive	Davis Hwy. to Creighton Rd.	5/22/2007	185	0.98	0.98	178	2	180		1560	10\%	1536	16	78	1716	No
UWF	Campus Drive	University Pkwy. to Davis Hwy.	5/3/2007	410	0.98	0.98	394	4	398		3120	12\%	3034	31	156	3432	No
CR296A/34	Cerny Road/Marlane Drive/CR34.	Blue Angel Pkwy. to Mobile Hwy.	4/30/2007	542	0.98	0.98	521	0	521		1480	32\%	1107	15	74	1628	No
SR30	Chase Street / US 98 (EB)	I-110/9th Ave. to Bayfront Pkwy.	5/15/2007	1716	0.98	0.98	1648	0	1648		3058	49\%	1716	31	153	3364	No
CR749	Chemstrand Road	Nine Mile Rd. to Old Chemstrand Rd. *	3/3/09	1402	0.99	1	1388	119	1507	AP	2110	65\%	814	21	106	2321	NO
SR742	Creighton Road	9th Ave. to Scenic Hwy.	4/22/2008	874	0.98	0.98	839	59	898		1560	58\%	662	16	78	1716	YES
SR742	Creighton Road	Davis Hwy. to 9th Ave.	2/10/2009	1888	0.99	1.01	1888	25	1913		3390	51\%	1816	34	170	3729	No
SR291	Davis Hwy.	University Pkwy. to Nine Mile Rd.	4/3/2008	1986	0.98	0.98	1907	145	2052		3390	61\%	1338	34	170	3729	YES
SR291	Davis Hwy.	Fairfield Dr. to Brent Ln	8/6/2007	1671	0.98	0.98	1605	33	1638		3390	44\%	2091	34	170	3729	No
SR291	Davis Hwy.	Burgess Rd to University Pkwy	1/29/09	4024	1	1.03	4145	36	4181		4240	99\%	59	42	212	4664	Yes
SR291	Davis Hwy.	Brent Ln to Burgess Rd	1/13/09	2284	0.97	1.03	2282	66	2348		3390	69\%	1042	34	170	3729	Yes
SR1O	Davis Hwy.	Nine Mile Rd. to Santa Rosa County Line	2/9/09	2345	0.97	1.01	2297	8	2305		3390	68\%	1085	34	170	3729	Yes
SR291	Davis Hwy. (NB)	Wright St. to Fairfield Dr.	5/21/2007	432	0.98	0.98	415	6	421		2034	19\%	1816	20	102	2237	No
CR465	Detroit Blvd.	Pine Forest Rd. to US 29	4/30/2008	562	0.99	0.98	545	327	872		1480	54\%	756	15	74	1628	No
CR297	Dog Track Road	Blue Angel Pkwy. to US 98	4/30/2007	441	0.98	0.99	428	79	507		1480	31\%	1121	15	74	1628	No
CR297	Dog Track Road	Sorrento Rd. to Blue Angel Pkwy.	5/3/2007	293	0.98	0.98	281	87	368		1480	23\%	1260	15	74	1628	No
County	Doug Ford Road	Perdido Bay Ctry Club to Sorrento Rq	5/19/2005	304	0.99	1	301	1	302		1390	20\%	1227	14	70	1529	No
CR443	E Street	Cervantes St. to Texar Dr.	5/15/2007	727	0.98	0.98	698	27	725		1480	45\%	903	15	74	1628	No

SR289	9th Avenue	Cervantes St. to Bayou Blvd.	2/26/2009	1704	0.98	0.99	1653	0	1653		3221	51\%	1568	32	161	3543	from SR295
SR289	9th Avenue	Chase St. to Cervantes St.	1/22/2009	1378	0.97	1.04	1390	0	1390		2955	43\%	1861	30	148	3251	No
SR289	9th Avenue	Langley Ave. to Creighton Rd.	3/4/09	2761	1	1	2761	17	2778		3110	89\%	332	31	156	3421	Yes
SR289	9th Avenue	Creighton Rd. to Olive Rd.	1/29/09	2332	0.99	1.03	2378	48	2426		3110	71\%	995	31	156	3421	NO
SR289	9th Avenue	Bayou Blvd. to Langley Ave	3/3/09	1676	1	1	1676	23	1699		3110	55\%	1411	31	156	3421	Yes
SR727	Fairfield Drive	Lillian Hwy. to Mobile Hwy.	1/15/2009	1543	0.99	1.05	1604	38	1642		1560	96\%	74	16	78	1716	No
SR295	Fairfield Drive	$\mathrm{l}-110$ to 12th Ave.	3/23/2009	1708	0.97	0.99	1640	2	1642		2750	60\%	1108	28	138	3025	to 9th Ave.
SR727	Fairfield Drive	Mobile Hwy. to New Warrington Rd.	5/17/2007	1944	0.97	0.97	1829	96	1925		3390	52\%	1804	34	170	3729	No
SR727	Fairfield Drive	Gulf Beach Hwy. to US 98	1/21/2009	490	0.97	1.03	490	34	524		1560	31\%	1192	16	78	1716	No
SR295	Fairfield Drive	New Warrington Rd. to Pace Blvd.	1/15/09	3016	0.98	1.03	3044	65	3109		3390	92\%	281	34	170	3729	Yes
SR295	Fairfield Drive	Pace Blvd. to 1-110	1/13/09	2142	0.99	1.05	2227	31	2258		3110	73\%	852	31	156	3421	Yes
SR727	Fairfield Drive	US 98 to Lillian Hwy.	2/3/09	1172	0.99	1.02	1183	60	1243		1560	72\%	473	16	78	1716	NO
CR399	Fort Pickens Road	t. Pickens to Pensacola Beach Blvd	5/17/2006	515	0.98	1.01	510	44	554		1480	34\%	1074	15	74	1628	No
SR30/295	Garden Street / US 98 / US 98B	A St. to Gregory St.	5/8/2007	1922	0.99	1	1903	0	1903		3110	56\%	1518	31	156	3421	No
SR30/295	Garden Street / US 98/ US 98B	Pace Blvd. to A St.	5/14/2007	1705	0.98	0.98	1637	7	1644		2954	51\%	1605	30	148	3249	No
SR30	Gregory Street (WB) / US 98	17th Ave. to 9th Ave./I-110	5/10/2007	1276	0.98	0.98	1225	0	1225		3048	40\%	1823	30	152	3353	YES
CR292A	Gulf Beach Hwy.	Sorrento Rd. (W) to Blue Angel Pkwy	2/2/2009	388	0.98	1	380	397	777		1480	48\%	851	15	74	1628	No
CR292A	Gulf Beach Hwy.	Blue Angel Pkwy. to Sorrento Rd. (E	5/1/2007	642	0.98	0.98	617	0	617		1480	38\%	1011	15	74	1628	No
SR292	Gulf Beach Hwy. / Sorrento Rd.	Blue Angel Pkwy. to Fairfield Dr.	3/3/2009	1263	0.99	1	1250	313	1563		3130	50\%	1567	31	157	3443	YES
SR292	Gulf Beach Hwy. / Sorrento Rd.	Fairfield Dr. to Navy Blvd.*	1/22/09	1574	1	1	1574	179	1753	AT	2000	88\%	247	20	100	2200	Yes
County	Hancock Ln. / Sarah Dr.	Palafox St. to Burgess Rd.	5/5/2005	67	0.99	1	66	27	93		1480	6\%	1535	15	74	1628	No
CR164	Highway 164	SR 97 to US 29	4/27/2005	42	0.95	0.98	39	5	44		1920	2\%	2068	19	96	2112	No
CR168	Highway 168	CR 99 to CR 4A	4/30/2007	62	0.98	0.98	60	0	60		1190	5\%	1249	12	60	1309	No
CR182	Highway 182 / Molino Road	CR 99 to US 29	4/27/2005	82	0.95	0.98	76	6	82		1190	6\%	1227	12	60	1309	No
CR196	Highway 196 / Barrineau Park Rd	CR 97 to US 29	4/27/2005	106	0.99	0.99	104	37	141		1190	11\%	1168	12	60	1309	No
CR196	Highway 196 / Barrineau Park Rd	US 29 to CR 95A	3/10/1999	56	0.99	0.99	55	26	81		1190	6\%	1228	12	60	1309	No
CR297A	Highway 297A	Pine Forest Rd. to CR 97	8/20/2008	900	0.97	1	873	123	996		1480	61\%	632	15	74	1628	No
CR297A	Highway 297A	CR 97 to Muscogee Rd. / CR 184	12/3/2008	437	0.98	0.98	420	88	508		1480	31\%	1120	15	74	1628	No
CR4	Highway 4	SR 97 to US 29	4/27/2005	142	0.95	0.99	134	9	143		1190	11\%	1166	12	60	1309	No
SR4	Highway 4 (Century)	US 29 to Santa Rosa County Line	4/30/2007	424	0.98	0.99	411	1	412		1350	28\%	1073	14	68	1485	No
CR4A	Highway 4A	US 29 (S) to CR 168	4/27/2005	48	0.95	0.98	45	0	45		1190	3\%	1264	12	60	1309	No
CR4A	Highway 4A (Century)	CR 168 to US 29 (N)	4/27/2005	101	0.98	0.99	98	0	98		1500	6\%	1552	15	75	1650	No
CR97	Highway 97 / Jack's Branch Rd.	Muscogee Rd. to Barrineau Park	4/30/2007	245	0.95	1	233	0	233		1300	16\%	1197	13	65	1430	No
SR97	Highway 97 / SR 97	US 29 to Alabama State Line	5/23/2007	379	0.98	0.99	368	15	383		1190	32\%	807	12	60	1309	YES
CR97	Highway 97(S)	CR 297A to Muscogee Rd.	11/18/08	334	0.98	1.04	340	177	517		1480	32\%	1111	15	74	1628	NO
CR97A	Highway 97A	CR 99 to CR 99A	2/11/2009	43	0.98	0.98	41	3	44		1190	3\%	1265	12	60	1309	No
CR99	Highway 99 (N)	SR 97 to Alabama State Line	4/28/1999	98.5	0.95	0.99	93	5	98		1190	7\%	1211	12	60	1309	No
CR99	Highway 99 (S)	CR 97 to SR 97	4/27/2005	93	0.95	0.99	87	3	90		1190	7\%	1219	12	60	1309	No
CR99A	Highway 99A	Pineville to CR 164	4/27/2005	78	0.95	0.99	73	4	77		1190	6\%	1232	12	60	1309	No
County	Hillview Road	Nine Mile Rd. to University Blvd.	6/9/2005	59	0.99	0.99	58	2	60		1480	4\%	1568	15	74	1628	No
County	Hollywood Avenue	Fairfield Dr. to Massachusetts Ave.	5/10/2007	380	0.98	0.98	365	3	368		1480	23\%	1260	15	74	1628	No
SR8	$\mathrm{l}-10$ (FIHS)	Nine Mile Rd. to Pensacola Blvd.	3/23/2009	3104	0.97	1.01	3041	646	3687		4840	76\%	1153	48	242	5324	YES
SR8	$\mathrm{l}-10$ (FIHS)	Pensacola Blvd. to Davis Hwy.	3/23/2009	5064	0.86	0.99	4311	191	4502		7600	59\%	3098	76	380	8360	YES
SR8	$\mathrm{l}-10$ (FIHS)	pavis Hwy. to Santa Rosa County Lir	3/12/2009	2621	0.97	1.01	2568	39	2607		4840	54\%	2233	48	242	5324	YES
SR8	I-10 (FIHS)	Alabama State Line to Nine Mile Rd	4/17/2007	2596	0.85	0.99	2185	15	2200		5350	41\%	3150	54	268	5885	YES
SR8A	I-110 (FIHS)	Airport Blvd. to $\mathrm{l}-10$	5/8/2003	5120	0.97	0.98	4867	26	4893		7600	64\%	2707	76	380	8360	YES
SR8A	I-110 (FIHS)	Gregory/Chase St. to Fairfield Dr.	4/9/2003	5141	0.97	0.98	4887	5	4892		7600	64\%	2708	76	380	8360	YES
SR8A	I-110 (FIHS)	Fairfield Dr. to Airport Blvd.	3/3/2003	4969	0.97	0.97	4675	22	4697		7600	62\%	2903	76	380	8360	YES
CR297	Innerarity Point Road	Innerarity Pt. to Sorrento Rd.	4/28/2009	560	0.98	0.97	532	311	843		1480	52\%	785	15	74	1628	No
County	Interstate Circle / Wymart Road	Pine Forest Rd. to Longleaf Dr.	5/3/2005	86	0.99	1	85	3	88		1480	5\%	1540	15	74	1628	No
CR298A	Jackson Street	lew Warrington Rd. to T St. (city limi	5/15/2007	696	0.98	0.98	668	16	684		1480	42\%	944	15	74	1628	No
CR298A	Jackson Street	Fairfield Dr. to New Warrington Rd.	5/16/2007	643	0.98	0.97	611	31	642		1480	39\%	986	15	74	1628	No
County	Jernigan Road	Johnson Ave. to Nine Mile Rd.	5/10/2007	591	0.99	0.99	579	24	603		1480	37\%	1025	15	74	1628	No
County	Johnson Avenue	Pensacola Blvd. to Davis Hwy.	4/23/2008	447	0.98	0.98	429	199	628		1480	39\%	1000	15	74	1628	No
County	Johnson Avenue	Davis Hwy. to Olive Rd.	2/9/2009	479	0.97	0.99	460	92	552		1480	34\%	1076	15	74	1628	No
County	Johnson Beach Road	Perdido Key Dr. to Gulf Island N.S.	3/31/1999	142	0.99	0.99	139	84	223		1390	15\%	1306	14	70	1529	No
County	Jordan Street	W St. to A St.	5/15/2007	649	0.98	0.98	623	0	623		1480	38\%	1005	15	74	1628	No

SR289	9th Avenue	Cervantes St. to Bayou Blvd.	2/26/2009	1704	0.98	0.99	1653	0	1653		3221	51\%	1568	32	161	3543	from SR295
SR289	9th Avenue	Chase St. to Cervantes St.	1/22/2009	1378	0.97	1.04	1390	0	1390		2955	43\%	1861	30	148	3251	No
SR289	9th Avenue	Langley Ave. to Creighton Rd.	3/4/09	2761	1	1	2761	17	2778		3110	89\%	332	31	156	3421	Yes
SR289	9th Avenue	Creighton Rd. to Olive Rd.	1/29/09	2332	0.99	1.03	2378	48	2426		3110	71\%	995	31	156	3421	NO
SR289	9th Avenue	Bayou Blvd. to Langley Ave	3/3/09	1676	1	1	1676	23	1699		3110	55\%	1411	31	156	3421	Yes
CR186	Kingsfield Road	US 29 to Chemstrand Rd.	4/25/2007	582	0.99	0.98	565	97	662		1480	41\%	966	15	74	1628	No
CR186	Kingsfield Road	CR 97 to US 29	11/18/2008	404	0.98	0.98	388	178	566		1480	35\%	1062	15	74	1628	No
CR186	Kingsfield Road	Beulah Rd./CR 99 to CR 97	5/3/2005	102	0.99	1	101	0	101		1480	6\%	1527	15	74	1628	No
County	Langley Avenue	Davis Hwy. to 9th Ave.	5/8/2007	522	0.98	0.98	501	3	504		1480	31\%	1124	15	74	1628	No
County	Langley Avenue	9th Avenue to Scenic Hwy.	1/20/09	998	0.97	1.03	997	18	1015		1480	62\%	613	15	74	1628	NO
CR480	Leonard St. / St. Mary St.	Pace Blvd. to Palafox St.	5/10/2007	397	0.98	0.98	381	9	390		3120	11\%	3042	31	156	3432	No
SR298	Lillian Highway	ue Angel Pkwy to New Warrington F	2/23/2009	977	0.97	0.99	938	81	1019		1560	59\%	697	16	78	1716	No
SR298	Lillian Highway	US 98 to Blue Angel Pkwy.	1/21/2009	783	0.98	0.99	760	56	816		1560	48\%	900	16	78	1716	No
County	Longleaf / Kemp / Diamond Dairy	Pine Forest Rd. to Pensacola Blvd.	1/27/2009	686	0.99	1.02	693	45	738		1390	48\%	791	14	70	1529	No
City	Main Street	A St. to Baylen St.	5/8/2007	1707	0.98	0.98	1639	22	1661		3120	48\%	1771	31	156	3432	No
County	Massachusetts Avenue	Mobile Hwy to Pace Blvd.	2/5/2009	790	0.97	1.02	782	190	972		1480	60\%	656	15	74	1628	No
SR296	Michigan Ave. / Beverly	Mobile Hwy. to Pensacola	2/25/09	2440	0.99	0.99	2391	77	2468		3390	73\%	922	34	170	3729	Yes
CR184	Muscogee Road	CR 97 to US 29	4/30/2007	801	0.98	0.98	769	56	825		1480	51\%	803	15	74	1628	No
CR184	Muscogee Road	Alabama State Line to CR 97	5/3/2005	269	0.99	1	266	0	266		1400	17\%	1274	14	70	1540	No
CR399	Navarre Beach	ulf Island N.S. to Santa Rosa Co. Lir	3/10/1999	223	0.99	0.99	219	0	219		1920	10\%	1893	19	96	2112	No
SR295	Navy Blvd	NAS to Gulf Beach Hwy.	3/26/2008	2712	0.98	0.98	2605	145	2750		4095	61\%	1755	41	205	4505	No
SR295	Navy Blvd.	ulf Beach Hwy to New Warrington P	5/19/2008	2499	0.98	0.97	2376	39	2415		4680	52\%	2265	47	234	5148	YES
SR30	Navy Blvd. / US 98	New Warrington Rd to Pace Blvd	5/20/2008	1711	0.98	0.98	1643	0	1643		3110	48\%	1778	31	156	3421	No
SR295	New Warrington Road	Navy Blvd to Fairfield Dr.	3/11/2009	2450	0.97	1	2377	154	2531		3390	75\%	860	34	170	3729	YES
SR295	New Warrington Road / Leg C	New Warrington Rd. to Lillian Hwy.	5/15/2007	498	0.98	0.98	478	8	486		1460	30\%	1120	15	73	1606	No
SR295	New Warrington Road / Leg C	Lillian Hwy. to Mobile Hwy.	5/15/2007	498	0.99	0.99	488	2	490		2750	16\%	2535	28	138	3025	No
SR10	Nine Mile Road / US 90A	University Pkwy to Davis Hwy	5/23/2007	1394	0.99	0.98	1352	45	1397		3390	41\%	1993	34	170	3729	YES
SR1O	Nine Mile Road / US 90A	Pine Forest Rd. to US 29	1/29/09	1807	0.99	1.05	1878	585	2463	AT	2730	90\%	267	27	137	3003	Yes
SR10	Nine Mile Road / US 90A	Mobile Hwy. to 1-10	1/20/09	422	0.97	1.04	426	1027	1453	HP	2010	72\%	557	20	101	2211	Yes
SR1O	Nine Mile Road / US 90A	US 29 to University Pkwy	3/5/09	2968	0.98	1	2909	284	3193	AT	4560	70\%	1367	46	228	5016	Yes
SR1O	Nine Mile Road / US 90A	1-10 to Pine Forest Rd.	2/23/09	986	0.97	0.99	947	144	1091		1560	70\%	469	16	78	1716	Yes
CR297	Old Chemstand Road	US 29 to Chemstrand Rd.	4/26/2007	493	0.98	0.99	478	56	534		1480	33\%	1094	15	74	1628	No
CR295A	Old Corry Field Road	Navy Blvd. to Lillian Hwy.	5/15/2007	801	0.98	0.99	777	11	788		1480	48\%	840	15	74	1628	No
CR295A	Old Corry Field Road	Barrancas Ave. to Navy Blvd.	5/17/2007	704	0.98	0.98	676	26	702		1480	43\%	926	15	74	1628	No
SR290	Olive Road	9th Ave. to Scenic Hwy.	4/23/2008	991	0.99	0.98	961	47	1008		1560	59\%	708	16	78	1716	No
SR290	Olive Road	Palafox Hwy to Davis Hwy.	1/29/09	1272	0.99	1.03	1297	125	1422		1610	80\%	349	16	81	1771	NO
SR290	Olive Road	Davis Hwy. to 9th Ave.	2009	1181	1	1.03	1216	83	1299		1610	73\%	472	16	81	1771	NO
SR292	Pace Blvd.	Cervantes St. to Palafox St.	5/23/2007	1816	0.99	0.98	1762	20	1782		3390	53\%	1608	34	170	3729	YES
SR292	Pace Blvd.	Garden St. to Cervantes St.	5/14/2007	1600	0.99	0.99	1568	7	1575		3270	48\%	1695	33	164	3597	YES
SR292	Pace Blvd.	Barrancas Ave. to Garden St.	5/13/2007	1133	0.99	0.98	1099	23	1122		3270	34\%	2148	33	164	3597	YES
CR95A	Palafox Highway	US 29 (Cantonment) to US 29 (Molino)	5/5/08	483	0.99	0.99	473	350	823		1400	53\%	717	14	70	1540	NO
CR95A	Palafox Street	Pensacola Blvd. to Nine Mile Rd.	1/27/2009	1415	0.97	1.04	1427	49	1476		1480	91\%	152	15	74	1628	NO
CR95A	Palafox Street / Hwy 95A	Nine Mile Rd. to US 29 (Cantonment	3/19/2008	600	0.98	0.99	582	54	636		1480	39\%	992	15	74	1628	No
County	Patricia Drive	Fairfield Dr. to Cerny Rd.	2/3/2009	839	0.97	1.03	838	0	838		1480	51\%	790	15	74	1628	No
CR399	Pensacola Beach Blvd.	Jia De Luna to Gulf Breeze City Lim	7/21/2009	1966	0.98	1	1927	89	2016		3120	65\%	1104	31	156	3432	YES
SR292	Perdido Key Drive	Vest End of State Park to River Roa	4/17/2008	884	0.97	0.98	840	388	1228		1850	60\%	807	19	93	2035	No
SR292	Perdido Key Drive	State Line to West End of State Pa	3/2/2009	672	0.99	1	665	334	999		1771	51\%	949	18	89	1948	No
SR 292	Perdido Key Drive	River Road to Innerarity Point Road	3/2/09	1094	0.99	1	1083	1574	2657	AP	2530	95\%	126	25	127	2783	NO
SR297	Pine Forest Road	I-10 to Nine Mile Rd.	1/29/2009	2091	0.98	1.03	2111	88	2199		2210	90\%	232	22	111	2431	No
SR297	Pine Forest Road	Mobile Hwy. to I-10	2/5/2009	2009	0.97	1.03	2007	386	2393		3390	71\%	997	34	170	3729	YES
CR297	Pine Forest Road	Nine Mile Rd. to West Roberts Rd.	1/27/09	1430	0.97	1.03	1429	182	1611		1480	99\%	17	15	74	1628	NO
CR184	Quintette Road	US 29 to Santa Rosa County Line	1/20/2009	430	0.97	1.04	434	692	1126		1480	69\%	502	15	74	1628	No
CR296	Saufley Field Road	Saufley Field to Mobile Hwy. *	5/5/2008	1164	0.98	0.99	1129	44	1173		2442	48\%	1269	24	122	2686	YES
SR292	Sorrento Road	Innerarity Pt. Rd. to Blue Angel Pkwy. *	2/11/09	1074	0.99	0.98	1042	223	1265	AP	2320	55\%	1055	23	116	2552	Yes

SR289	9th Avenue	Cervantes St. to Bayou Blvd.	2/26/2009	1704	0.98	0.99	1653	0	1653		3221	51\%	1568	32	161	3543	from SR295
SR289	9th Avenue	Chase St. to Cervantes St.	1/22/2009	1378	0.97	1.04	1390	0	1390		2955	43\%	1861	30	148	3251	No
SR289	9th Avenue	Langley Ave. to Creighton Rd.	3/4/09	2761	1	1	2761	17	2778		3110	89\%	332	31	156	3421	Yes
SR289	9th Avenue	Creighton Rd. to Olive Rd.	1/29/09	2332	0.99	1.03	2378	48	2426		3110	71\%	995	31	156	3421	NO
SR289	9th Avenue	Bayou Blvd. to Langley Ave	3/3/09	1676	1	1	1676	23	1699		3110	55\%	1411	31	156	3421	Yes
County	Ten Mile Road	US 29 to UWF Boundary	2/11/2009	843	0.99	0.98	818	212	1030		1480	63\%	598	15	74	1628	No
County	Ten Mile Road	Stephani Rd. to US 29	4/25/2007	466	0.98	0.98	448	48	496		1480	30\%	1132	15	74	1628	No
SR752	Texar Drive	Fairfield Dr. to 9th Ave.	5/21/2007	846	0.98	0.98	812	5	817		3110	24\%	2604	31	156	3421	No
County	Tonawanda Drive	61st Ave. to Mobile Hwy.	4/30/2007	374	0.98	0.98	359	0	359		1480	22\%	1269	15	74	1628	No
County	Underwood Avenue	Langley Ave. to 9th Ave.	4/19/2007	478	0.98	0.98	459	0	459		1480	28\%	1169	15	74	1628	No
County	University Pkwy.	Davis Hwy . to Nine Mile Rd.	1/29/2009	2093	0.98	1.04	2133	53	2186		3120	64\%	1246	31	156	3432	No
County	University Pkwy.	Nine Mile Rd. to Campus Dr.	5/3/2007	1219	0.98	0.98	1171	32	1203		3120	35\%	2229	31	156	3432	No
SR95	US 29	Nell Line Rd. (Cantonment) to SR 9-	10/21/2009	1211	0.98	0.98	1163	553	1716		4190	41\%	2474	42	210	4609	YES
SR95	US 29	CR 4 to Alabama State Line	5/22/2007	951	0.95	0.98	885	13	898		2470	36\%	1572	25	124	2717	YES
SR95	US 29	SR 97 to CR 4	4/21/2007	548	0.95	0.98	510	2	512		5140	10\%	4628	51	257	5654	YES
SR95	US 29	Nine Mile Rd. to Well Line Rd.	1/20/09	2041	0.96	1.02	1999	434	2433		3390	72\%	957	34	170	3729	Yes
SR95	US 29 / Palafox St.	Leonard St. to Massachusetts Ave.	5/7/2007	1554	0.98	0.98	1492	36	1528		3390	45\%	1862	34	170	3729	Fairfield
SR95	US 29 / Palafox St.	Cervantes St. to Leonard St.	5/21/2007	900	0.99	0.97	864	12	876		2955	27\%	2375	30	148	3251	No
SR95	US 29 / Pensacola Blvd.	W Street to l-10	3/2/2009	3825	0.98	1	3749	136	3885		5080	76\%	1196	51	254	5588	YES
SR95	US 29 / Pensacola Blvd.	hassachusetts Av / Pace Blvd to W $\$$	1/12/2009	3053	0.97	1.03	3050	233	3283		5080	65\%	1797	51	254	5588	YES
SR95	US $29 /$ Pensacola Blvd.	$\mathrm{l}-10$ to Nine Mile Rd.	4/3/2008	3384	0.98	0.98	3250	56	3306		5640	59\%	2334	56	282	6204	YES
SR10A	US 90 / Cervantes St.	$\mathrm{l}-110$ to DeSoto St.	5/12/2008	1918	0.98	0.98	1842	1	1843		3110	59\%	1267	31	156	3421	YES
SR10A	US 90 / Mobile Hwy.	Edison Dr. to Fairfield Dr.	2/5/2009	3221	0.98	1.02	3220	132	3352		4680	72\%	1328	47	234	5148	YES
SR10	US 90 / Mobile Hwy.	Alabama State Line to Nine Mile Rd	5/5/2005	499	1	0.11	55	0	55		1190	5\%	1135	12	60	1309	YES
SR1OA	US 90 / Mobile Hwy.	Pine Forest Rd. to Edison Dr.	2/20/09	2490	0.98	1.01	2465	293	2758		3390	81\%	632	34	170	3729	Yes
SR1OA	US 90 / Mobile Hwy.	Nine Mile Rd. to Pine Fores Rd.	2/3/09	580	0.97	1.03	579	432	1011		1490	68\%	479	15	75	1639	Yes
SR1OA	US 90 / Mobile Hwy.	Fairfield Dr to Pace Blvd.	3/3/09	1797	0.99	1	1779	3	1782		3110	57\%	1328	31	156	3421	Yes
SR10A	US 90 / Scenic Hwy.	DeSoto St. to I-10	1/20/2009	1380	0.99	0.98	1339	1	1340		1560	86\%	220	16	78	1716	YES
SR1OA	US 90 / Scenic Hwy.	1-10 to Davis Hwy.	2/9/09	1436	0.97	1.03	1435	86	1521	AP	1650	92\%	129	17	83	1815	Yes
$\begin{gathered} \hline \text { SR30/298 } \\ \text { B } \\ \hline \end{gathered}$	US 98	Alabama State Line to Blue Angel Pkwy.	1/21/09	928	0.97	1.04	936	190	1126		1560	72\%	434	16	78	1716	Yes
SR30/298B	US 98 / Dr. Farin Drive	Blue Angel Pkwy. to Navy Blvd.	1/22/2009	1951	0.97	1.03	1949	161	2110		3390	62\%	1280	34	170	3729	YES
CR399	Via De Luna	Pensacola Beach Blvd. to Gulf Island NS	3/12/09	1153	0.97	1.04	1163	293	1456		3120	42\%	1976	15	74	3432	NO
CR453	W Street	Cervantes St. to Fairfield Dr.	1/15/2009	1247	0.98	1.03	1259	37	1296		2950	40\%	1949	30	148	3245	No
CR453	W Street	Navy Blva. to Cervantes St.	5/14/2007	1006	0.95	0.98	937	0	937		3120	27\%	2495	31	156	3432	No
County	Well Line Rd. / Santa Rosa Blvd.	Muscogee Rd. to US 29	5/5/2005	163	0.95	1	155	0	155		1390	10\%	1374	14	70	1529	No
CR453	WStreet	Fairfield Dr to Pensacola Blvd.	1/27/09	2054	0.98	1.03	2073	151	2224		2950	69\%	1021	30	148	3245	NO
		Escambia County Office of Transportation \& Traffic Operations															
		TRAFFIC VOLUME \& LEVEL OF SERVICE REPORT										Updated 10/11/10					
			Peak Hour Between 4 and 6 P.M.														

APPENDIX B

Growth Trends Analysis

TRAFFIC TRENDS
I-10 -- W SR 297 at State Line

County:	Escambia
Station \#:	156
Highway:	$\mathrm{l}-10$

	** Annual Trend Increase:	80
Trend R-squared:	5.2%	
Trend Annual Historic Growth Rate:	0.30%	
Trend Growth Rate (2010 to Design Year):	0.23%	
Printed:	21-Jul-11	
Straight Line Growth Option		

*Axle-Adjusted

TRAFFIC TRENDS
I-10 -- E of SR 291

County:	Escambia
Station \#:	2015
Highway:	$\mathrm{I}-10$

Year	Traffic (ADTIAADT)	
	Count*	Trend**
2006	45000	43400
2007	44000	42700
2008	39000	41900
2009	36500	41200
2010	45000	40400
2021 Opening Year Trend		
2021	N/A	32200
2022 Mid-Year Trend		
2022	N/A	31400
2023 Design Year Trend		
2023	N/A	30700
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

TRAFFIC TRENDS
I-110 -- South of I-10

| ** Annual Trend Increase: | 100 |
| ---: | ---: | ---: |
| Trend R-squared: | 50.0% |
| Trend Annual Historic Growth Rate: | 0.16% |
| Trend Growth Rate (2010 to Design Year): | 0.16% |
| Printed: | $21-J u l-11$ |
| Straight Line Growth Option | |

*Axle-Adjusted

TRAFFIC TRENDS
I-110 -- South of Maxwell St

County:	Escambia
Station \#:	2017
Highway:	$\mathrm{I}-110$

Year	Traffic (ADTIAADT)	
	Count*	Trend**
2006	52000	53300
2007	53000	52400
2008	53000	51500
2009	51000	50600
2010	48500	49700
2021 Opening Year Trend		
2021	N/A	39800
2022 Mid-Year Trend		
2022	N/A	38900
2023 Design Year Trend		
2023	N/A	38000
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

TRAFFIC TRENDS
US 29 -- N of US 90A

*Axle-Adjusted

TRAFFIC TRENDS
US 29 -- S of l-10

County:	Escambia
Station \#:	4037
Highway:	US 29

*Axle-Adjusted

TRAFFIC TRENDS

US 29 -- S of SR 296

County:	Escambia
Station \#:	4038
Highway:	US 29

*Axle-Adjusted

TRAFFIC TRENDS
SR 297 -- South of I-10

County:	Escambia
Station \#:	4063
Highway:	SR 297

Year	Traffic (ADTIAADT)	
	Count*	Trend**
2006	30000	31900
2007	34500	31100
2008	29500	30300
2009	28500	29500
2010	29000	28700
2021 Opening Year Trend		
2021	N/A	19900
2022 Mid-Year Trend		
2022	N/A	19100
2023 Design Year Trend		
2023	N/A	18300
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

TRAFFIC TRENDS
SR 10 -- East of SR 10A

County:	Escambia
Station \#:	145
Highway:	SR 10

| ** Annual Trend Increase: | 100 |
| ---: | ---: | ---: |
| Trend R-squared: | 18.1% |
| Trend Annual Historic Growth Rate: | 2.44% |
| Trend Growth Rate (2010 to Design Year): | 2.22% |
| Printed: | $21-\mathrm{Jul}-11$ |
| Straight Line Growth Option | |

*Axle-Adjusted

TRAFFIC TRENDS
SR 10 -- East of C95A

County:	Escambia
Station \#:	4052
Highway:	SR 10

Year	Traffic (ADTIAADT)	
	Count*	Trend**
2006	44500	42400
2007	38500	40200
2008	36000	37900
2009	36000	35700
2010	34500	33400
2021 Opening Year Trend		
2021	N/A	8700
2022 Mid-Year Trend		
2022	N/A	6400
2023 Design Year Trend		
2023	N/A	4200
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

TRAFFIC TRENDS

SR 10 -- East of DOT Maintenance Yard

County:	Escambia
Station \#:	4046
Highway:	SR 10

Year	Traffic (ADTIAADT)	
	Count*	Trend**
2006	41000	42600
2007	43000	41100
2008	39500	39600
2009	39000	38100
2010	35500	36600
2021 Opening Year Trend		
2021	N/A	20100
2022 Mid-Year Trend		
2022	N/A	18600
2023 Design Year Trend		
2023	N/A	17100
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

TRAFFIC TRENDS
SR 10A -- West of CR 297

County:	Escambia
Station \#:	105
Highway:	SR 10A

	** Annual Trend Increase:	-80
Trend R-squared:	57.1%	
Trend Annual Historic Growth Rate:	-0.75%	
Trend Growth Rate (2010 to Design Year):	-0.79%	
Printed:	$21-\mathrm{Jul}-11$	
Straight Line Growth Option		

*Axle-Adjusted

TRAFFIC TRENDS
SR 10A -- SE of SR 297

County:	Escambia
Station \#:	4002
Highway:	SR 10A

	** Annual Trend Increase:	-800
Trend R-squared:	80.0%	
Trend Annual Historic Growth Rate:	-3.01%	
Trend Growth Rate (2010 to Design Year):	-3.42%	
Printed:	$21-\mathrm{Jul}-11$	
Straight Line Growth Option		

*Axle-Adjusted

TRAFFIC TRENDS
SR 10A -- NW of SR 727

County:	Escambia
Station \#:	5062
Highway:	SR 10A

*Axle-Adjusted

TRAFFIC TRENDS
SR 173 -- West of SR 297

County:	Escambia
Station \#:	5316
Highway:	SR 173

*Axle-Adjusted

TRAFFIC TRENDS

CR 297A -- South End of 11-Mile Creek Bridge

County:	Escambia
Station \#:	4060
Highway:	CR 297A

| ** Annual Trend Increase: | 0 |
| ---: | ---: | ---: |
| Trend R-squared: | 0.0% |
| Trend Annual Historic Growth Rate: | 0.00% |
| Trend Growth Rate (2010 to Design Year): | 0.00% |
| Printed: | 21-Jul-11 |
| Straight Line Growth Option | |

*Axle-Adjusted

TRAFFIC TRENDS
CR 297A -- South of CR 184

County:	Escambia
Station \#:	418
Highway:	CR 297A

	** Annual Trend Increase:	-40
Trend R-squared:	4.8%	
Trend Annual Historic Growth Rate:	-0.66%	
Trend Growth Rate (2010 to Design Year):	-1.25%	
Printed:	$21-\mathrm{Jul}-11$	
Straight Line Growth Option		

*Axle-Adjusted

TRAFFIC TRENDS
CR 97 -- South of CR 184

County:	Escambia
Station \#:	419
Highway:	CR 97

*Axle-Adjusted

TRAFFIC TRENDS
CR 97 -- NW of SR 95

County:	Escambia
Station \#:	447
Highway:	CR 97

*Axle-Adjusted

TRAFFIC TRENDS
CR 184 -- SW of CR 97

County:	Escambia
Station \#:	501
Highway:	CR 184

| ** Annual Trend Increase: | -70 |
| ---: | ---: | ---: |
| Trend R-squared: | 55.7% |
| Trend Annual Historic Growth Rate: | -2.27% |
| Trend Growth Rate (2010 to Design Year): | -2.31% |
| Printed: | $21-J u l-11$ |
| Straight Line Growth Option | |

Year	Traffic (ADTIAADT)	
	Count*	Trend**
2006	3300	3300
2007	3200	3200
2008	3100	3100
2009	2900	3100
2010	3100	3000
2021 Opening Year Trend		
2021	N/A	2200
2022 Mid-Year Trend		
2022	N/A	2100
2023 Design Year Trend		
2023	N/A	2100
TRANPLAN Forecasts/Trends		

*Axle-Adjusted

TRAFFIC TRENDS
CR 184 -- West of CR 297A

County:	Escambia
Station \#:	436
Highway:	CR 184

	** Annual Trend Increase:	50
Trend R-squared:	9.9%	
Trend Annual Historic Growth Rate:	0.79%	
Trend Growth Rate (2010 to Design Year):	0.71%	
Printed:	$21-\mathrm{Jul}-11$	
Straight Line Growth Option		

*Axle-Adjusted

TRAFFIC TRENDS
CR 184 -- West of US 29

County:	Escambia
Station \#:	435
Highway:	CR 184

*Axle-Adjusted

TRAFFIC TRENDS
C95A -- North of Airport Blvd

County:	Escambia
Station \#:	5072
Highway:	C95A

*Axle-Adjusted

TRAFFIC TRENDS
c95A -- South of SR 10

County:	Escambia
Station \#:	4051
Highway:	C95A

*Axle-Adjusted

	State Roads		County Roads	
	Trends	R-square	Trends	R -square
	0.30\%	5.2\%	0.00\%	0.0\%
	-1.73\%	9.2\%	-0.66\%	4.8\%
	16.00\%	50.0\%	-1.92\%	90.0\%
	-1.69\%	57.9\%	4.79\%	49.4\%
	-2.08\%	63.4\%	-2.27\%	55.7\%
	-2.60\%	38.4\%	0.79\%	9.9\%
	-2.50\%	26.4\%	-3.73\%	53.0\%
	-2.51\%	27.5\%	-2.87\%	40.0\%
	2.44\%	18.1\%	-6.51\%	79.1\%
	-5.31\%	80.7\%		
	-3.52\%	73.3\%		
	-0.75\%	57.1\%		
	-3.01\%	80.0\%		
	-2.25\%	12.6\%		
	-1.64\%	92.9\%		
Average All	-0.72\%		-1.55\%	
Average w/R-square > 50\%	-0.25\%		-1.93\%	

APPENDIX C

Planned and Programmed Improvements

Cost Feasible Plan Report

FLORIDA-ALABAMA 2035 LONG RANGE TRANSPORTATION PLAN OR BLUEPRINT 2035

Prepared for

Florida-Alabama Transportation Planning Organization and The Florida Department of Transportation, District Three

Prepared by

West Florida Regional Planning Council
Staff to the Florida-Alabama
Transportation Planning Organization

February 2011

This report was financed in part by the U.S. Department of Transportation, Federal Highway Administration, the Florida Department of Transportation, and local participating governments, in partial fulfillment of UPWP Work Task C. 2

Adopted Cost Feasible Plan

Florida Alabama TPO Transportation Improvement Program - FY 2010/11-2014/15

Section 2-Capacity

2224771
 SR 8 (I-10)

Work Summary:	 RECONSTRUCT
LRTP Number:	13 (page 7-9)
Lead Agency:	FDOT

From:	FROM SR 291 DAVIS HIGHWAY
To:	TO SR 10A (US 90) SCENIC
Length:	2.886

Phase	Fund Source	2010/11	2011/12	2012/13	2013/14	2014/15	Total
PE (31)	DIH	54,883	0	0	0	0	54,883
PDE (21)	DIH	996	0	0	0	0	996
ROW (41)	ACNH	0	0	308,798	0	0	308,798
ROW (43)	ACNH	0	0	10,896,122	2,953,897	0	13,850,019
ROW (4B)	ACNH	0	0	889,696	0	0	889,696
ROW (45)	ACNH	0	0	343,815	90,376	0	434,191
CST (52)	ACNH	0	0	0	0	25,347,682	25,347,682
CEI (62)	GMR	0	0	0	0	4,753,715	4,753,715
CST (52)	GMR	0	0	0	0	22,189,471	22,189,471
CEI (61)	ACNH	0	0	0	0	385,526	385,526
Total		55,879	0	12,438,431	3,044,273	52,676,394	68,214,977

Project Description: SIS Project Priority \#2

APPENDIX D
Detailed Development Program

MillerSellen
225 East Robinson Street, Suite 300 Orlando, Florida 32801 | 407.839 .4006

Legend	
	DSAP Boundary
	Regional Employment
	Town Center
	Village Center
	Neighborhood Center
	Traditional Village
	Traditional Garden
	Suburban Garden
	Conservation Neighborhood
	Public
	Low-Impact Natural Resource Area
	Conservation
$17 / \pi$	Proposed Bee Line Corridor
=	Existing ROW
$=$ = = =	Proposed ROW
+1	Railroad
P	Elementary / Middle School
	High School
己	Community Park
令	Regional Park

Notes:

1. Location and extent of Low-impact Natural Resource Areas are approximate and subject to change pursuant to permitting through the Northwest Florida Water Management District.
2. Proposed roadway alignments are conceptual and subject to further refinement and permitting
The Potential Beeline Corridor is conceptual in nature and not intended to depict a pre-determined alignment.
3. Public park and school sites have been preliminarily located base upon calculated demand at build-out and proximity to population centers. The identified sites are subject to approval and acquisition by the appropriate governing authority and may change accordingly.

LAND USE	DEV. ACRES	LOW DEN.	MED. DEN.	HIGH DEN.	UNITS			MAX. NON-RES. SQ. FT.
					LOW	MEDIUM	HIGH	
Conservation Neighborhood	3,934.8	0.1	1	3	393	3,934	11,804	0
Suburban Garden	1,772.9	3	5	10	5,318	8,864	17,729	0
Traditional Garden	594.9	5	7	15	2,974	4,164	8,923	0
Traditional Village	248.1	7	12	20	1,736	2,977	4,961	0
Village Center*	84.2	7	15	25	176	378	631	400,000
Town Center **	300.0	10	15	25	1,200	1,800	3,000	1,200,000
Regional Employment District***	1,738.2	10	15	20	869	1,303	1,738	10,500,000
Neighborhood Center	20.2	5	5	5	100	100	100	60,000
Utility	0.0	0	0	0	0	0	0	0
TOTALS:	8,693.3			,	12,766	23,520	48,886	12,160,000

** Density assumptions in the Venter Centers are applied to 30% of developable acreage
*** Density assumptions in the Regional Employment Districts are applied to 5% of developable acreage
NOTE: DIFFERENCES IN TOTAL UNITS FROM THAT IN DETAILD DENSITY CHART ARE DUE TO ROUNDING.

$\begin{aligned} & \text { PARCEL } \\ & \text { NUMBER } \end{aligned}$	residental land use	dev. Acres	Low den.	med. den.	High den.	Low	UNTT	HIGH
1	Conservation Neighborhood	190.5	0.1	1	3	19	190	571
2	Conseration Neighborhood	94.9	${ }_{0} 0.1$	1	3	9	${ }_{94}$	284
3	Suburban Garden	${ }_{62.5}$	3	5	10	${ }_{187}$	${ }_{312}$	${ }_{624}$
4	Suburban Garden	29.8	3	5	10	89	149	298
5	Suburban Garden	12.1	3	5	10	36	60	120
${ }^{6}$	Suburban Garden	11.6	3	5	10	${ }^{34}$	57	115
7	Traditional Garden	${ }^{6} .8$	5	7	${ }^{15}$	${ }^{34}$	${ }^{47}$	102
${ }^{8}$	Conseration Neighborhood	178.9	${ }^{0.1}$	1	3	17	178	536
9	Conseration Neighborhood	79.7	${ }^{0.1}$	1	3	7	79	239
10	Suburban Garden	65.3	3	5	10	195	326	652
11	Conseration Neighborhood	60.7	${ }_{0} 0.1$	1		6	${ }_{60}$	181
12	Conseration Neighborhood	83.2	0.1	1	3	8	83	249
13	Conseration Neighborhood	10.2	0.1	1	3	1	10	30
14	Conseration Neighborhood	276.7	${ }^{0.1}$	1	3	27	276	830
15	Suburban Garden	57.0	3	5	10	171	285	570
16	Suburban Garden	25.3	3	5	10	${ }^{7}$	${ }^{126}$	253
17	Suburban Garden	3.5	3	5	10	10	17	${ }^{34}$
18	Neighbortood Center	5.0	5	5	5	${ }^{25}$	25	25
19	Suburban Garden	5.9	3	5	10	${ }^{17}$	29	58
20	Suburban Garden	8.5	3	5	10	25	42	84
21	Suburban Garden	114.1	3	5	10	${ }_{342}$	570	$\stackrel{1,140}{1}$
22	Conseration Neighborhood	139.5	${ }^{0.1}$	1	3	13	139	418
${ }^{23}$	Suburban Garden	38.2	1	5	10	114	190	381
24	Suburban Garden	74.6	3	5	10	223	372	745
25	Suburban Garden	26.4	3	5	10	79	131	263
${ }^{26}$	Traditional Garden	58.1	5	7	15	290	406	${ }^{871}$
27	village Center*	40.0		15	25	84	180	300
28	Traditional Garden	31.8	5	7	15	159	222	477
29	Conseration Neighborhood	279.9	${ }^{0} 1$	1	3	${ }_{27}$	279	839
30	Conseration Neighborthood	301.3	${ }_{0} 0.1$	1	3	30	301	${ }_{903}$
${ }^{31}$	Suburban Garden	73.6	1	5	10	220	367	735
32	Suburban Garden	61.4	3	5	10	184	307	614
33	Suburban Garden	74.9	3	5	10	224	374	748
${ }^{34}$	Traditional Garden	${ }^{23.7}$	5	7	${ }^{15}$	${ }_{118}^{118}$	${ }^{166}$	355
35	Suburban Garden	36.3 384	3	5	10	${ }^{108}$	${ }^{181}$	362 304
${ }_{3}^{36}$	Suburban Garden	38.4	3	5	10	115	${ }^{192}$	${ }^{384}$
${ }^{37}$	Conservation Neieghbortood	${ }_{9} 94.7$	${ }_{0} 0.1$	1	3	9	94	283
38	Conseration Neighborhood	68.7	${ }^{0.1}$	1		${ }^{6}$	68	206
39	Suburban Garden	57.4	1	5	10	172	286	573
40	Traditional Garden	63.2	5	7	15	316	442	948
41	Traditional Village	99.5	7	12	20	696	1,194	1.990
42	Suburban Garden	36.0	3	5	10	108	180	360
43 44	Suburba Garden	104.7 2	3	5	10	314	${ }^{523}$	${ }^{1,046}$
$\stackrel{44}{45}$	Suburban Garden	${ }^{2.3}$	3	5	${ }^{10}$	6	11	22
$\stackrel{45}{46}$		${ }_{6}^{6.5}$	10	${ }_{15}^{15}$	${ }^{20}$	3	4	6
${ }_{46}^{46}$	${ }_{\text {Regional Employment*** }}^{\substack{\text { a }}}$	$\begin{array}{r}71.9 \\ \hline 129\end{array}$	10	${ }_{15}^{15}$	${ }^{20}$	${ }^{35}$	${ }_{5}^{53}$	${ }_{11} 71$
47	Regional Employment***	124.3	10	15	20	62	93	124
${ }^{48}$	Regional Employment**	80.4	10	15	20	${ }^{40}$	${ }^{60}$	80
49	Neighbortood Center	5.1	5	5	5	25	25	25
50	Conseration Neighborhood	5.0	0.1	1	3	,	5	15
51	Conseration Neighborhood	238.9	0.1	1	3	${ }^{23}$	238	716
52	Conseration Neighborhood	342.9	0.1	1	3	${ }^{34}$	342	1.028
53	Conseration Neighborhood	38.3	0.1	1	3	3	${ }^{38}$	114
54 55	Conseration Neieibhorhood	$\underline{2.7}$	${ }^{0.1}$	5	3	${ }^{0}$	$\stackrel{2}{211}$	8
5	Suburban Garden	${ }^{42.4}$	3	5	${ }^{10}$	${ }^{127}$	${ }^{211}$	${ }_{623}^{423}$
$\begin{array}{r}56 \\ \hline 57\end{array}$	Suburban Garden	64.7 78	3	5	10	193	${ }^{323}$	646
57	Suburban Garden	77.8	3	5	10	233	388	777
58	Traditional Garden	61.2	5	7	15	305	428	917
59	Traditional Garden	21.2	5	7	15	105	148	317
60	Town Center**	190.2	10	15	25	760	1,141	1,901
61	Traditional Garden	13.6	5	7	15	67	95	203
62	Town Center**	32.0	10	15	25	128	192	320
${ }_{6}^{63}$	Town Center**	77.8 7.2	10	${ }^{15}$	${ }^{25}$	${ }^{311}$	${ }^{466}$	${ }_{5}^{778}$
64	Traditional Village	27.2	7	12	${ }^{20}$	190	${ }^{326}$	543
65	Traditional Village	28.5	7	12	20	199	${ }^{342}$	570
66	Suburban Garden	75.3	3	5	10	225	376	${ }^{753}$
67	Conseration Neighborhood	147.4	${ }^{0.1}$	1	3	14	147	${ }^{442}$
${ }^{68}$	Suburban Garden	71.0	3	5	10	212	354	709
69	Suburban Garden	19.8	3	5	10	59	99	198
70	Traditional Village	11.5	7	12	20	${ }^{80}$	${ }^{137}$	229
${ }^{71}$	Traditional Village	10.1	7	12	20	70	120	201
72	Traditional Garden	65.7	5	7	15	${ }^{328}$	459	984
73 74 7	Suburan Garden	$\begin{array}{r}84.0 \\ \hline 105 \\ \hline\end{array}$	5	5	10	${ }^{252}$	${ }^{420}$	840 1592
74	Traditional Garden	105.5	5	7	15	527	${ }^{738}$	${ }^{1,582}$
75	Traditional Garden	58.9	5	7	15	294	${ }^{412}$	${ }_{883}$
76 77 77	Traditional Carden	10.6 28	${ }_{5}^{5}$	7	15 10	52 86	74 149	158
78	Traditional Garden	44.1	5	7	15	${ }_{280}^{820}$	(144	${ }_{661}^{288}$
79	Traditional Village	39.0	7	12	20	272	467	779
80	Village Center**	8.5	7	15	25	17	38	63
${ }^{81}$	Village Center*	35.6	7	15	25	74	160	267
${ }^{82}$	Traditional Vilage	32.4 33	3	${ }_{5}^{12}$	20	${ }^{226}$	${ }^{388}$	${ }_{647}^{633}$
83 84 88	Suburban Garden Suburban Garden	33.3 3.5	3	5	10 10	99	${ }_{1}^{166}$	333 34
${ }_{85}$	Conservation Neighbormood	${ }_{180.3}^{3.5}$	${ }_{0} 0.1$	1	${ }^{10}$	${ }_{18}^{10}$	17 180	34 540
${ }^{86}$	Utility	0.0	0	0	0	0	0	0
87	Suburban Garden	20.9	3	5	10	62	104	208
\%88	Suburban Garden	18.6	3	5	10	${ }_{5} 5$	${ }^{93}$	186
89 90	$\frac{\text { Conservation Neibhborhood }}{\text { Conseration Neighoriood }}$	7.5 214.2	${ }_{0}^{0.1}$	1	${ }_{3}^{3}$	${ }_{21}^{0}$	$\stackrel{7}{214}$	22 642
91	Suburban Garden	82.8	1	5	10	248	414	828
${ }^{92}$	Traditional Garden	30.5	5	7	15	152	${ }^{213}$	457
93	Neieghorthod Center	5.0 2.0	5	5	5	${ }^{25}$	${ }^{25}$	${ }^{25}$
${ }_{9}^{95}$	$\frac{\text { Conseration Neiehborhood }}{\text { Conseration Neibhborbood }}$	26.3	${ }_{0}^{0.1}$	1	3	2	${ }^{26}$	${ }_{28} 78$
95 96	$\frac{\text { Conservation Neieghborhood }}{\text { Conseration Neighorhood }}$	95.1 60.8	${ }_{0.1}^{0.1}$	1	${ }_{3}^{3}$	6	95 60	285 182 1
${ }_{97}$	Conseravation Neighborroood	10.6.0	${ }_{0}^{0.1}$	1	3	10	104	182 314
98	Regional Emplomment***	44.8	10	15	20	22	${ }^{33}$	44
99	Regional Employment**	265.3	10	15	20	${ }^{132}$	198	265
100 101	$\frac{\text { Regional Employment*** }}{\text { Regional } \text { mployment** }}$	28.6 19.1	${ }_{10}^{10}$	${ }_{15}^{15}$	${ }_{20}^{20}$	${ }^{14}$	${ }_{14}^{21}$	${ }_{19}^{28}$
102	Regional Employment**	33.3	10	15	20	16	24	33
${ }^{103}$	Neishborhood Center	5.0 80	5	5	5	${ }^{24}$	${ }^{24}$	${ }^{24}$
104 105		${ }_{8}^{8.0}$	10	${ }_{15}^{15}$	${ }^{20}$	3	5	7
105 106		48.2 33.1	10 10	${ }_{15}^{15}$	20 20	${ }^{24}$	${ }^{36}$	48 38 1
107	Resional mploloyment***	${ }_{71.7}$	10	${ }_{15}^{15}$	20	${ }_{35}^{16}$	${ }_{53}^{24}$	${ }_{71}{ }^{33}$
108	Regional Employment***	5.6	10	15	${ }^{20}$	2	4	5
109 110	Regional Employment***	93.6	10	${ }^{15}$	${ }^{20}$	${ }_{4}^{46}$	70	93
110 111	Regional Employment***	4.8 13.8 1	10 10	15 15	$\stackrel{20}{20}$	2	3 10	${ }_{13}^{4}$
112	Regional Employment**	187.8	10	15	20	${ }_{9}$	${ }_{10} 10$	187
${ }^{1113}$		$\stackrel{23.3}{235}$	10	${ }_{15}^{15}$	${ }^{20}$	${ }^{11}$	17	${ }^{23}$
${ }^{114}$	Regional Employment**	83.5	10	15	20	${ }_{4}^{41}$	62	${ }^{83}$
$\frac{115}{116}$	$\frac{\text { Suburan Garden }}{\text { Regional mployment** }}$	$\frac{13.9}{1.5}$	3 10	${ }_{5}^{5}$	10 20	${ }_{41}^{41}$	$\stackrel{69}{1}$	${ }^{138}$
117	Regional Employment*********)	$\stackrel{1298}{ }$	10	15	20	64	97	129
${ }^{118}$	Regional Employment**	35.4	10	15	20	17	26	35
119 112	Regional Employment***	311.8	10	${ }^{15}$	${ }^{20}$	${ }^{155}$	233	311
120 121		10.5 1.8	10 10	15 15	${ }_{20}^{20}$	5	1	10
122	Conservation Neighborhood	46.1	${ }_{0} 0.1$	15	20	4	46	${ }_{1}^{138}$
${ }^{123}$	Conservation Neieghborhood	17.2 3.2	0.1	1	3	1	17	51
122 125 125	$\frac{\text { Conservation Neieibhorhood }}{\text { Conseration Neighornood }}$	33.7 35.2	0.1 0.1	1	3	3_{3}^{3}	33 35	101 105 1
${ }_{126}^{126}$	$\frac{\text { Conseveratoon Neieghornood }}{\text { Conseration Neighbormod }}$	35.2 73	${ }_{0}^{0.1}$	1	${ }_{3}$	${ }^{3}$	35 73	105 219
${ }^{127}$	Conseration Neighborhood	247.8	${ }^{0.1}$	1	${ }^{3}$	${ }^{24}$	${ }^{247}$	${ }_{7} 73$
128 129	Suburban Garden	72.5	3	5	10	217	362	124
129 130	$\frac{\text { Suburban Garden }}{\text { Suburban Garden }}$	$\frac{16.3}{8.3}$	3	5	10 10	${ }^{48}$	${ }_{81}^{81}$	${ }_{82}^{162}$
131	Suburran Garden	${ }_{1} 17.6$	3	5	10	${ }_{52}^{24}$	${ }_{8}^{41}$	${ }_{175}^{82}$
		$\frac{79.2}{8,611.7}$	0.1	1	3	$\frac{7}{12,685}$	$\stackrel{79}{23,372}$	$\stackrel{237}{48,560}$

* Density assumptions in the Venter Centers are applied to 30% of developable acreage
$* *$ Density assumptions in the Town Centers are applied to 40% of develoopable acreage
** Density assumptions in the Town Centers are applied to 40% of develoopable acreage
$* * *$ Density assumptions in the Regional Employment Districts are applied to 5% of developable acreage

ESCAMBIA COUNTY - DSAP DEVELOPMENT PROGRAM CALCULATIONS

PARCEL NUMBER	NON-RESIDENTIAL LAND USE	DEV. ACRES	MAX. FAR PER SITE	MAX. NON-RES. SQ. FT
18	Neighborhood Center	5.0	0.25	15,000
27	Village Center	40.0	0.50	200,000
45	Regional Employment	6.5	0.50	57,478
46	Regional Employment	71.9	0.50	634,999
47	Regional Employment	124.3	0.50	1,097,740
48	Regional Employment	80.4	0.50	709,783
49	Neighborhood Center	5.1	0.25	15,000
60	Town Center	190.2	1.00	760,578
62	Town Center	32.0	1.00	128,143
63	Town Center	77.8	1.00	311,279
80	Village Center	8.5	0.50	38,587
81	Village Center	35.6	0.50	161,413
93	Neighborhood Center	5.0	0.25	15,000
98	Regional Employment	37.8	0.50	208,569
99	Regional Employment	265.3	0.50	1,465,786
100	Regional Employment	28.6	0.50	158,181
101	Regional Employment	19.1	0.50	105,252
102	Regional Employment	33.3	0.50	183,762
103	Neighborhood Center	5.0	0.50	15,000
104	Regional Employment	8.0	0.25	44,090
105	Regional Employment	48.2	0.50	266,140
106	Regional Employment	33.1	0.50	182,712
107	Regional Employment	71.7	0.50	396,088
108	Regional Employment	5.6	0.50	30,940
109	Regional Employment	93.6	0.50	516,865
110	Regional Employment	4.8	0.50	26,631
111	Regional Employment	13.8	0.50	76,245
112	Regional Employment	187.8	0.50	1,037,542
113	Regional Employment	23.3	0.50	128,622
114	Regional Employment	83.5	0.50	461,394
116	Regional Employment	1.5	0.50	8,343
117	Regional Employment	129.8	0.50	717,257
118	Regional Employment	35.4	0.50	195,586
119	Regional Employment	311.8	0.50	1,722,535
120	Regional Employment	10.5	0.50	57,736
121	Regional Employment	1.8	0.50	9,724
	TOTALS:	2,135.5	Sas	12,160,000

TAZ No.	Parcel No.
350	1-3,19
351	11-18
352	4-10,20
353	21-25
354	28
355	26-27,41
356	42
357	40
358	43
359	48-49
360	38-39
361	44-46
362	47
363	50-52
364	53-56
365	60
366	33-34
367	35-37
368	63
369	31
370	29
371	30
372	32
373	132
374	128-131
375	125-127
376	123-124
377	118
378	116-117
379	114
380	68-71,115
381	66-67
382	62,64-65
383	72-75
384	59,61
385	57-58,76-78
386	119-121
387	122
388	79-80,112-113
389	107-111
390	81,87-89
391	82-86
392	90-95
393	99
394	96-97
395	98,100,102-104
396	101,105-106

APPENDIX E

NWFRPM Trip Generation

Q \&		
すুల00 M్ల 000		
N్లు 00		
J-j000		
প্লী000		
®® 		
¢్ల్ల000		
\&		
Щ్ల		
ষ్ల్ల 000		
®్ల్ల000		
※्ల 00		
ت్ల000		
প্లిల000		
¢00		
N		
N్ల 00 H00		
R P000 \&		
ఫ్ల్ర00		
ஜ్లంల0000000000000000		
※్ల 000		
ট্ల్లా00		
\&		
$\stackrel{0}{0} 000$ 		

${ }_{\sim}^{\circ} \stackrel{\text { i }}{\text { ¢ }}$ ¢	
$000{ }_{\text {¢ }}$	
00	

\qquad 368
5.03
3.23
12.7
8.37
1.87
11.72
0
4.35
2.82
0
0
0
0
0
0
0
0
115.93
4.26
5.67
71.77
0
0
0
0
0
0
0
0
0 000 00 N000 000 000 n000 000 ひ 000 W 000 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
 000 N $000 \stackrel{\omega}{\omega}$ ת000 000 㐫 000

 00 $000 \underset{\omega}{\omega}$ 000 N 00
359
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0$\begin{array}{ll}360 & 0 \\ & \end{array}$$\mathscr{N}_{0} 000$
22.74
16.12000 W．000 N000 $000 \mathrm{\omega}$ 000 000 d 000 ق $000 \mathrm{\omega}$ 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 000 岗 000 N్ల N $000 \stackrel{\text { 山／}}{\underset{\omega}{\omega}}$ 000 m 000 だ n00 \qquad 389
0.6
0.53
1.42
1.39
0.23
1.64
0
0.52
0.43
0
0
0
0
0
0
0
36.6
0.54
0.62
16.12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 000 鬼 000 U． 000 岗屏 000

 00 gٌ 000 hì 000 Nm M్ల్ల 000 000 000 u 000000000000000 000 N $000 \mathrm{\omega}$ 000 000 فٌ 000 N $000 \underset{\sim}{\omega}$ ω
 ：
 000 0001 000 00 U 000 000 d 000 000

381	
0	
0	
0	
0	
0	
0	
0	
0	
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
0	0
	0

 n000 000 岗花 000 000 బ $000{ }_{\infty}^{\mathscr{M}}$ 000 ê 000 0 000 Ŵ 2000 $000{ }_{\text {® }}$

$000 \mathscr{囚}^{\omega}$

\qquad

 $\begin{array}{llllllll}52.85 & 23.2 & 22.8 & 29.87 & 38.56 & 6.35 & 84.59 & 3\end{array}$ $\begin{array}{lllllllll}354 & 2.92 & 3.86 & 6.35 & 6.37 & 1.91 & 29.73 & 0.9\end{array}$ | | 6.37 | 1.91 | 29.73 | 0.9 | 2.92 | 2.21 | 42.9 | 1.8 | 20.2 | 376 | 12 | 5.1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 42.8 | 55.2 | 84.59 | 91.53 | 29.7 | 313.5 | 18 | 1.6 | 0.9 | | | | $\begin{array}{rrrrrrrrrrrrrr}5 & 42.8 & 55.2 & 84.59 & 91.53 & 29.7 & 313.5 & 18 & 38.06 & 41.1 & 485 & 24 & 358 & 551 \\ 56 & 1.65 & 3.84 & 3.03 & 6.49 & 0.93 & 17.77 & 1 & 1.6 & 2.78 & 48.4 & 1 & 30.1 & 55.1 \\ 1.9 & 0.8\end{array}$ $\begin{array}{rrrrrrrrr}357 & 4.37 & 5.83 & 8.77 & 9.31 & 2.92 & 38.06 & 1 . \\ 358 & 3.77 & 7.19 & 7.1 & 11.68 & 2.21 & 41.1 & 2.8\end{array}$ $\begin{array}{lll}359 & 99.4 & 186 \\ 360 & 2.93 & 3.97\end{array}$ $\begin{array}{lllllll}660 & 2.93 & 3.97 & 5.65 & 6.24 & 1.84 & 23.97 \\ 361 & 92.5 & 129 & 152.6 & 208.5 & 43.2 & 358.2\end{array}$ $\begin{array}{llllllll}362 & 129 & 230 & 152.6 & 208.5 & 43.2 & 358.2 & 30 \\ 3676.2 & 56.9 & 551.4 & 55\end{array}$

$\begin{array}{lllll}655 & 46.2 & 61.4 & 77.13\end{array}$		6.34	8.44
67	4.12	5.58	36822.7

369 $\begin{array}{lllllllll}3.77 & 5.68 & 45.64 & 8.17 & 78.86 & 4.9 \\ 2.61 & 1.19 & 16.04 & 0.6\end{array}$ $\begin{array}{llllllllll}1 & 2.61 & 3.22 & 8.27 & 5 & 1.9 & 18.35 & 0.8\end{array}$ $\begin{array}{llllllll}372 & 3.67 & 3.36 & 7.27 & 4.64 & 1.61 & 16.72 & 0.7 \\ 372 & 2.48 & 3.15 & 4.61 & 4.89 & 0.97 & 13.24 & 0.5\end{array}$ $\begin{array}{lll}73 & 0.58 & 0.77\end{array}$ $\begin{array}{llll}4 & 4.24 & 5.63\end{array}$ $\begin{array}{lll}575 & 2.22 & 2.95 \\ & 0.24 & 0.33\end{array}$ $\begin{array}{lll}377 & 8.99 & 10.9\end{array}$ \begin{tabular}{lllll}
0.42 \& 4.48 \& 0.8 \& 11.3 \& 0.5

\hline 14 \& 0.48 \& 0.09 \& 1.16 \& 0.1

 $\begin{array}{llllllll}12.12 .1 & 17.1 & 2.88 & 24.44 & 1.8\end{array}$ $\begin{array}{llllllllllll} & 18.1 & 22 & 28.26 & 34.67 & 5.85 & 60.4 & 6.4 & 16.01 & 14.9\end{array}$ 5.1 $3821_{3.1} 16.8$ $\begin{array}{llllllll}8.55 & 11.7 & 14.9 & 17.57 & 3.5 & 52.13 & 2.3\end{array}$

1.02 \& 1.51 \& 14.92 \& 17.57 \& 3.5 \& 52.13 \& 2.3

\hline
\end{tabular}

 \begin{tabular}{llllllll}
387 \& 0.17 \& 0.22 \& 0.28 \& 151.9 \& 25.5 \& 217.5

\hline 0.33 \& 0.06 \& 0.75

 $\begin{array}{llllllrr}88 & 48.3 & 58.8 & 75.29 & 92.35 & 15.6 & 136.9 & 10\end{array}$ $\begin{array}{lllllllllll}389 & 34 & 41.5 & 51.85 & 64.79 & 12.1 & 103.3 & 7.9 & 33.02 & 31.3\end{array}$ $\begin{array}{llllllll}301 & 7.3 & 9.2 & 11.73 & 14.51 & 2.83 & 27.02 & 1.9 \\ 391 & 2.22 & 3.05 & 3.66 & 4.46 & 0.86 & 12.84 & 0.6\end{array}$ $\begin{array}{llll}391 & 2.22 & 3.25 \\ 3 & 2.93 & 3.91\end{array}$ $\begin{array}{llll}393 & 38.4 & 47.3 \\ 394 & 0.42 & 0.57\end{array}$

\& 101.7 \& 7.6 \& 20.36 \& 1.39

\hline 9.42 \& 0.42 \& 0.57 \& 0.65 \& 0.83 \& 0.14 \& 1.99 \& 01 \& 0.24 \& 0.22
\end{tabular} $\begin{array}{lllllllll}19.7 & 24 & 30.11 & 37.51 & 6.22 & 52.85 & 3.9\end{array}$

 358
3.77
7.19
7.1
11.7
2.21
41.1
2.78
5.03
7.34
132
4.03
158
200
4.72
3.38
62.8
5.68
4.68
16.4
1.15
1.9
1.75
1.19
0.29
2.14
1.09
0.12
3.99
14.9
11.1
2.1
1.67
9.61
8.1
1.68
6

 62
6.61
63.348
3.
 2
3.4
4
4
1
13
13
.8
2.4
3.4
80
2.2
102
10
4.2
8.1
74
2.4
3
21
2
1.2
1.4
1.6
0.4
2.9
1.5
0.2
6.9
27
21
5.1
3.1
13
12
2.6
18
66
6

368	369	370
22.72	3	2.6
28.3	3.8	3.2
38.7	5.7	8.3
45.64	5.9	5
8.17	1.2	1.9
78.86	16	18
4.89	0.6	0.8
17.72	1.7	2.3
16.41	1.5	1.9
125.76	39	40
16.38	1.4	1.5
158.71	49	40
228.63	72	55
14.34	1.3	1.5
20.72	2	1.2
186.23	39	24
19.51	3.1	4.8
22.63	1.9	2.2
114.84	26	15
25.79	4.5	3.3
15.03	3.3	2.9
17.26	3.9	3.3
20.52	5.5	2.5
4.69	1	0.5
35.85	7.6	3.9
15.72	3.1	1.8
1.58	0.3	0.2
14.4	8.1	5.3
51.29	27	18
36.62	18	9.9
30.9	3.5	2.1
29.59	3.2	1.8
134.31	17	9.3
101.03	11	6.2
13.51	1.2	0.7
59.74	5.4	3.2
123.31	65	43
0.96	0.2	0.1
105.19	39	26
69.89	27	18
27.22	6.7	4.3
21.07	2.3	1.4
20.2	2.6	1.7
51.23	27	19
2.47	0.4	0.2
28.29	15	10
	10	9.5

182
13
17
23
27
27
4.9
55
2.9
10
9.6
135
9.8
172
252
8.5
13
171
11
13
134
17
9.3
11
13
3
3
23
10
1
16
59
48
24
24
24
68
81
8.6
37
144
0

 0.4
0.6
0.7
0.8
0.8
0.1
2
0.1
0.2
0.2
5.6
0.2
0.7
10
10
0.2
0.5
5
0.3
0.3
2.5
0.4
0.2
0.3
0.3
0.3
0.1
0.6
0.5
0.1
2.5
9.8
5.9
1
1
0.5
1.5
2
 396
18.19
22.14
27.95 22.14
27.85
34.66 $\begin{array}{r}5.75 \\ 48.64 \\ 3.59 \\ \hline 9.68 \\ \hline\end{array}$ 3.59
9.68
9.35 9.35
25.63

8.45 | 6 | 25.63 |
| ---: | ---: |
| 1 | 8.4 |
| | 29.65 |
| 7 | 43.05 | 29.65

43.05
8.96 8.96
16.26 16.26
49.49
13.09 13.09
11.74
25.74 11.74
25.74
13.87 9.51
10.88
10.63 20.93
15.17 $\begin{array}{r}72.81 \\ 6.75 \\ \hline\end{array}$ 45.95
137.1

HBW
$\begin{array}{r}350 \\ 0 \\ 0.72 \\ 0 \\ 0 \\ 0 \\ 6.09 \\ 0 \\ 0 \\ 0 \\ 22.8 \\ 0 \\ 22 \\ 31.8 \\ 0 \\ 0 \\ 16.1 \\ 0 \\ 0 \\ 7.27 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 3\end{array}$

381	3
0	3
0.2	4.1
0	4.5
0	6
0	1
2.6	13
0	0.7
0	2.1
0	2.2
12	26
0	1.8
14	30
21	45
0	1.9
0	2.2
13	33
0	2.4
0	2.4
6.4	17
0	2.1
0	1.5
0	1.6
0	1.7
0	0.4
0	3.1
0	1.6
0	0.2
3.2	5.2
12	19
8.9	14
0	3.4
0	2.8
2.8	9.7
0	10
0	1.2
0	5.9
30	46
0	0.1
23	37
18	28
3.3	6.4
0	2.8
0.3	3.2
16	25
0	0.4
8.1	12
7.5	11

 $\begin{array}{r}396 \\ 7.84 \\ 9.89 \\ 11.95 \\ 15.78 \\ 2.63 \\ 20.12 \\ 1.75 \\ 4.78 \\ 4.98 \\ 1.61 \\ 4.06 \\ 1.67 \\ 2.36 \\ 4.56 \\ 6.75 \\ 14.64 \\ 6.06 \\ 5.52 \\ 6.37 \\ 5.29 \\ 3.81 \\ 4.24 \\ 4.43 \\ 1.11 \\ 8.08 \\ 5.43 \\ 0.81 \\ 0.84 \\ 3.14 \\ 1.91 \\ 11.39 \\ 7.46 \\ 11.46 \\ 28.24 \\ 3.09 \\ 18.39 \\ 7.68 \\ 0.82 \\ 12.62 \\ 6.07 \\ 6.22 \\ 10.47 \\ 21.97 \\ 8.4 \\ 3.79 \\ 5.12 \\ 3.31 \\ \hline\end{array}$

 $\begin{array}{rr} & \\ 0 & 364 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 50 & 26 \\ 0 & 0\end{array}$
$\begin{array}{rr}368 & 369 \\ 0 & 0 \\ 0 & 0\end{array}$
$\begin{array}{cccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}$
N00000000
\#00000000

$\begin{array}{ll}2.2 & 7.9 \\ 2.3 & 8.6 \\ 3.2 & 12 \\ 3.4 & 13 \\ 0.4 & 2.2 \\ 0.1 & 16 \\ 4.3 & 16 \\ 0.3 & 1.2 \\ 0.7 & 2.7\end{array}$
o
$\begin{array}{rrr} & 383 & 384 \\ 0 & 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \\ 36 & 70 & 12\end{array}$$387 \quad 388$毋ం00000000 No6.53
9.52

HBSR

 $\begin{array}{r}352 \\ 6.77 \\ 6.35 \\ 8.85 \\ 11.52 \\ 1.9 \\ 19.98 \\ 0.93 \\ 2.7 \\ 2.25 \\ 13.55 \\ 1.76 \\ 12.77 \\ 17.27 \\ 1.86 \\ 1.11 \\ 12.79 \\ 4.2 \\ 2.47 \\ 6.42 \\ 1.75 \\ 2.48 \\ 2.19 \\ 1.42 \\ 0.33 \\ 2.42 \\ 1.23 \\ 0.14 \\ 0.97 \\ 3.54 \\ 1.81 \\ 1.68 \\ 1.4 \\ 4.89 \\ 4.76 \\ 0.59 \\ 2.86 \\ 8.57 \\ 0.1 \\ 5.77 \\ 3.38 \\ 1.93 \\ 1.19 \\ 1.37 \\ 3.97 \\ 0.22 \\ 2.15 \\ 1.93 \\ \hline\end{array}$

 356
0.5
1.1
0.9
2
0.3
4.3
0.3
0.5
0.9
4.7
0.3
2.7
5.2
0.6
0.3
2.4
0.7
0.5
0.8
0.2
0.3
0.2
0.2
0
0.3
0.2
0
0.1
0.4
0.2
0.2
0.2
0.6
0.7
0.1
0.5
1
0

358
1.19
2.11
2.25
3.72
0.93
0
0.89
1.61
2.39
13
16
16
20.8
1.5
11
11
1.8
1.5

 $\begin{array}{ll}2.63 & 0.97 \\ 2.28 & 0.87\end{array}$

 $\begin{array}{rrrrrrrrrrrrrrrrrrr}1.3 & 1.2 & 0.8 & 0.9 & 1 & 0.2 & 1.8 & 1.4 & 0.2 & 0.3 & 1 & 0.6 & 2.9 & 1.7 & 2.2 & 6.2 & 0.5 & 3.9 & 2.4 \\ 1.13 & 1 & 0.7 & 0.8 & 0.9 & 0.2 & 1.6 & 1.2 & 0.2 & 0.2 & 0.8 & 0.5 & 2.6 & 1.5 & 2 & 5.5 & 0.5 & 3.5 & 2\end{array} 0.2$

389 2.15 2.58 3.38 4.17 0.78 6.06 0.5 1.74 1.61 0.8 1.57 0.99 1.43 1.56 3.45 6.56 2. 2.2 2.94 1.85 1.24 1.42 1.56 0.38 2.79 1.71 0.28 0.3 1.18 0.86 7.07 4.45 5.59 16.3 1.37 10.32 2.83 0.32 7.66 4.62 5.38 6.65 10.26 3

 \begin{tabular}{ll}
1.9 \& 2.6

1.1 \& 3.2

1.4 \& 4

1.7 \& 5.1

0.3 \& 0.8

3.2 \& 6.2

0.2 \& 0.5

0.7 \& 1.4

0.7 \& 1.3

3.9 \& 0.5

0.7 \& 1.2

4.4 \& 0.6

7.2 \& 0.9

0.8 \& 1.3

1.6 \& 2.4

7.9 \& 4.5

0.8 \& 1.8

0.9 \& 1.7

3.3 \& 2.2

0.8 \& 2

0.5 \& 1.4

0.6 \& 1.6

0.7 \& 1.7

0.1 \& 0.4

1.2 \& 3

0.9 \& 2.3

0.2 \& 0.4

1 \& 0.3

4 \& 1.3

2.5 \& 0.7

3.1 \& 4.6

1.8 \& 2.8

3.2 \& 3.7

6.7 \& 10

0.6 \& 0.9

4.4 \& 6.6

9.6 \& 3.1

0.2 \& 0.4

\hline 8.8 \& 5.2

10 \& 3.1

5.6 \& 2.7

6.9 \& 4.2

14 \& 12

12 \& 10

2.6 \& 2.9

12 \& 3.4

8 \& 2.4

8 \& 2.7

\hline

393 \& 394

2.6 \& 0.2

3.2 \& 0.2

4 \& 0.2

5.1 \& 0.3

0.8 \& 0.1

6.2 \& 0.5

0.5 \& 0

1.4 \& 0.1

1.3 \& 0.1

0.5 \& 0.4

1.2 \& 0.1

0.6 \& 0.5

0.9 \& 0.8

1.3 \& 0.1

2.4 \& 0.2

4.5 \& 0.8

1.8 \& 0.1

1.7 \& 0.1

2.2 \& 0.4

2 \& 0.1

1.4 \& 0.1

1.6 \& 0.1

1.7 \& 0.1

0.4 \& 0

3 \& 0.2

2.3 \& 0.2

0.4 \& 0

0.3 \& 0

1.3 \& 0.2

0.7 \& 0.7

4.6

\hline 2.4

2.3 \& 0.2

3.7 \& 0.3

10 \& 0.7

0.9 \& 0.1

6.6 \& 0.4

3.1 \& 1.8

0.4 \& 0

5.2 \& 1.4

3.1 \& 1.9

2.7 \& 0.5

4.2 \& 0.6

12 \& 2.6

10 \& 2.9

2.9 \& 0.4

3.4 \& 2.3

2.7 \& 1.6
\end{tabular}

\qquad

355
12.35
15.51
25.4
26.4
9.43
99.84
5.38
1.38
12.73
79.58
7.37
57.08
9.029
7.94
3.7
54.68
18.03
10.4
19.5
4.62
5.37
4.82
3.78
0.88
6.72
3.16
0.33
3.18
11.74
5.92
4.52
4.02
14.86
14.78
2.21
10.29
28.38
0.21
18.27
13.34
6.94
3.43
3.85
15.05
0.54
7.52
6.78

 ©্ল゙ন

 353
3.25 $\begin{array}{ll}53 & 354 \\ 25 & 0.32\end{array}$ 355356
5.37
7.35
7.35
 357
0.42
0.58
0.82
0.84
0.27
4.24
0.13
0.56
0.37
10.77
0.54
12.4
15.06
0.25
0.18
4.62
0.68
0.59
1.79
0.15
0.21
0.19
0.12
0.03
0.21
0.1
0.01
0.29
1.02
0.79
0.17
0.15
0.98
0.72
0.1
0.48
2.49
0.01
2.24
1.75
0.53
0.17
0.19
1.14
0.02
0.59
0 358
0.33
0.65
0.6
0.96
0.18
4.23
0.21
0.37
0.49
15.4
0.29
17.7
21.1
0.3
0.23
5.4
0.46
0.35
1.49
0.11
0.15
0.15
0.9
0.02
0.17
0.08
0.01
0.23
0.84
0.68
0.15
0.13
0.81
0.6
0.11
0.5
2.08
2.08
0.01
1.94
1.53
0.45
0.15
0.17
1.02
0.01
0.52
0

361
8.5
14.2
14.83
20.23
4.23
70.41
3
12.4
17.72
561.05
9.76
603.36
1053.2
11.7
11.21
280.29
10.88
11.66
70.46
4.82
3.95
3.68
3.97
0.96
6.95
3.29
0.32
9.74
36.63
30.09
6.42
5.6
38.47
27.94
5.82
23.65
89.67
0.2
05
66.6
20.56
20.22
6.45
7
7

359 $\begin{array}{rrr}359 & 10 & 23.5 \\ 660 & 0.28 & 0.38\end{array}$ \begin{tabular}{llll}
\& 0.28 \& 0.38 \& 0.42

\& 8.5 \& 14.2 \& 14.

\hline \& 1.5 \& \&

\hline

 $\begin{array}{ccc}32 & 11.3 & 25.3 \\ 63 & 0.31 & 0.7\end{array}$ $\begin{array}{lll}64 & 0.18 & 0.32\end{array}$ $\begin{array}{lll}65 & 4.12 & 6.13\end{array}$ $\begin{array}{lll}366 & 0.69 & 0.94\end{array}$ $\begin{array}{llll}367 & 0.41 & 0.56 \\ 368 & 2.47 & 3.38\end{array}$

688 \& 2.47 \& 3.38

\hline 69 \& 0.32 \& 0.41

 $\begin{array}{lll} & 0.29 & 0.36\end{array}$ $\begin{array}{lll}71 & 0.41 & 0.38\end{array}$ $\begin{array}{lll}372 & 0.26 & 0.34 \\ 373 & 0.06 & 0.08\end{array}$ $\begin{array}{lll}5 & 0.21 & 0.3\end{array}$ $\begin{array}{lll}376 & 0.02 & 0.03\end{array}$ $\begin{array}{lll}377 & 0.63 & 0.87 \\ 378 & 219 & 3.04\end{array}$ $\begin{array}{lll}378 & 2.19 & 3.04 \\ 79 & 1.26 & 1.75\end{array}$ $\begin{array}{llll}30 & 0.28 & 0.39\end{array}$ $\begin{array}{lll}31 & 0.25 & 0.35 \\ 32 & 1.37 & 1.89\end{array}$

38 \& 1.37 \& 1.89

\hline 83 \& 0.83 \& 1.15

\& 1.87

34 \& 0.99 \& 0.13

\hline 85 \& 0.48 \& 0.67

 $\begin{array}{lll}385 & 0.48 & 0.67 \\ 38 & 5.38 & 7.49\end{array}$ $\begin{array}{lll}387 & 0.01 & 0.02\end{array}$

387 \& 3.01 \& 4.49

\hline 88 \& 3.39 \& 4.7
\end{tabular} $\begin{array}{lll}388 & 3.39 & 4.7 \\ 389 & 2.34 & 3.27 \\ 390 & 0.64 & 0.89\end{array}$ $\begin{array}{lrr}390 & 0.64 & 0.89 \\ 91 & 0.21 & 0.3\end{array}$ $\begin{array}{lll}992 & 0.26 & 0.36\end{array}$ $\begin{array}{rrr}3.36 & 0.48 & 3.5 \\ 394 & 0.03 & 0.05\end{array}$ $\begin{array}{lll}394 & 0.03 & 0.05 \\ 395 & 1.24 & 1.73\end{array}$ 3961.131 .58

 \begin{tabular}{rrrr}
1.2 \& 25.3 \& 0.7 \& 0.3

4.83 \& 19.1 \& 0.5 \& 0.

\hline .23 \& 36.5 \& 1 \& 0.4

 $\begin{array}{llll}14.23 & 36.5 & 1 & 0.4 \\ 20.4 & 0.4 \\ 4025 & 5.26 & 0.1 & 01\end{array}$ $\begin{array}{llll}4.23 & 5.26 & 0.1 & 0.1 \\ 70.41 & 106 & 3 & 1.3\end{array}$ $\begin{array}{llll}3.54 & 5.2 & 1.1 \\ 12.4 & 15.1 & 0.3 & 0.2 \\ 17.2 & 0.2 & & \end{array}$ $\begin{array}{rrrr}12.4 & 15.1 & 0.3 & 0.2 \\ 17.72 & 21.1 & 0.3 & 0.2\end{array}$

561.05114919

9.76

11.8

0.2

0.1

\hline
\end{tabular} $\begin{array}{lll}603.36 & 1053 & 12 \\ 11 \\ 1053.2 & 1429 & 22 \\ 16\end{array}$

$$
\begin{array}{r}
24.03 \\
5.92
\end{array}
$$

 웅은
$\begin{array}{lllllllllllllllllllllllll}368 & 369 & 370 & 371 & 372 & 373 & 374 & 375 & 376 & 377 & 378 & 379 & 380 & 381 & 382 & 383 & 384 & 385 & 386 & 387 & 388 \\ 2.47 & 0.3 & 0.3 & 0.4 & 0.3 & 0.1 & 0.4 & 0.2 & 0 & 0.6 & 2.2 & 1.3 & 0.3 & 0.3 & 1.4 & 0.8 & 0.1 & 0.5 & 5.4 & 0 & 3.39\end{array}$

 | 4.77 | 0.6 | 0.5 | 0.5 | 0.5 | 0.1 | 0.8 | 0.4 | 0 | 1.2 | 4.2 | 2.4 | 0.5 | 0.4 | 2.4 | 1.4 | 0.2 | 0.8 | 8.7 | 0 |
| ---: | :--- |
| 0.9 | 0.1 | 0.2 | 0.2 | 0.1 | 0 | 0.2 | 0.1 | 0 | 0.2 | 0.7 | 0.4 | 0.1 | 0.1 | 0.5 | 0.3 | 0.2 | 0.9 | 10 | 0 |

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrr}1.49 & 0.1 & 0.2 & 0.2 & 0.1 & 0 & 0.2 & 0.1 & 0 & 0.2 & 0.8 & 0.7 & 0.2 & 0.1 & 0.8 & 0.6 & 0.1 & 0.5 & 2.1 & 0 \\ 56.61 & 4 & 4.2 & 3.9 & 3.3 & 0.8 & 5.8 & 2.8 & 0.3 & 8.4 & 31 & 25 & 5.4 & 4.7 & 31 & 23 & 4.4 & 19 & 77 & 0.2\end{array}$

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrr}70.46 & 4.8 & 4 & 3.7 & 4 & 1 & 7 & 3.3 & 0.3 & 9.7 & 37 & 30 & 6.4 & 5.6 & 38 & 28 & 5.8 & 24 & 90 & 0.2 & \\ 99.59 & 6.8 & 5.1 & 5.1 & 5.7 & 1.4 & 10 & 4.8 & 0.5 & 14 & 53 & 43 & 9.2 & 8.1 & 55 & 40 & 7.9 & 34 & 130 & 0.3 & 1\end{array}$ | | | | | | | | | | | | | | | | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 60.17 | 3.9 | 2.3 | 2.8 | 3.2 | 0 | 0.8 | 5.5 | 0.1 | 0 | 0.6 | 0.6 | 2.1 | 1.8 | 0.4 | 0.3 | 1.3 | 1 | 0.2 |
| 1.4 | 5.2 | 0 | | | | | | | | | | | | | | | | |
| 2.06 | 0.3 | 0.5 | 0.4 | 0.2 | 0.1 | 0.4 | 0.2 | 0 | 0.5 | 1.6 | 23 | 5.1 | 4.5 | 34 | 24 | 5.9 | 0.2 | 1.1 |

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrr}42.48 & 3.4 & 1.9 & 2.2 & 2.7 & 0.6 & 4.6 & 1.9 & 0.2 & 5.2 & 18 & 13 & 3.7 & 3.8 & 33 & 12 & 1.5 & 6.9 & 44 & 0.1 & 34.12 \\ 3.37 & 0.4 & 0.3 & 0.4 & 0.6 & 0.1 & 0.7 & 0.3 & 0 & 0.7 & 2.2 & 1.3 & 0.3 & 0.3 & 2 & 1 & 0.1 & 0.5 & 5.3 & 0 & 3.2 \\ 1.85 & 0.3 & 0.3 & 0.4 & 0.3 & 0.1 & 0.4 & 0.2 & 0 & 0.5 & 1.4 & 0.8 & 0.2 & 0.2 & 1 & 0.6 & 0.1 & 0.3 & 3.3 & 0 & 2.0\end{array}$ $\begin{array}{lllllllllllllllllllll}1.85 & 0.3 & 0.3 & 0.4 & 0.3 & 0.1 & 0.4 & 0.2 & 0 & 0.5 & 1.4 & 0.8 & 0.2 & 0.2 & 1 & 0.6 & 0.1 & 0.3 & 3.3 & 0 \\ 2.17 & 0.4 & 0.4 & 0.4 & 0.3 & 0.1 & 0.5 & 0.2 & 0 & 0.5 & 1.6 & 0.9 & 0.2 & 0.2 & 1.3 & 0.7 & 0.1 & 0.3 & 3.9 & 0 \\ 2.67 & 0.6 & 0.3 & 0.4 & 0.1 & 0.3 & 0.3\end{array}$ $\begin{array}{rllllllllllllllllllll}2.67 & 0.6 & 0.3 & 0.3 & 0.4 & 0.1 & 0.6 & 0.2 & 0 & 0.6 & 1.8 & 1 & 0.3 & 0.3 & 1.5 & 0.8 & 0.1 & 0.4 & 4.4 & 0 \\ 0.6 & 0.1 & 0.1 & 0.1 & 0.1 & 0 & 0.3 & 0.1 & 0 & 0.2 & 0.6 & 0.3 & 0.1 & 0.1 & 0.4 & 0.2 & 0 & 0.1 & 1.5 & 0\end{array}$
 $\begin{array}{cccccccccccccccccccccccc}1.93 & 0.3 & 0.2 & 0.2 & 0.2 & 0.1 & 0.7 & 0.5 & 0.1 & 1.4 & 3.6 & 1.6 & 0.2 & 0.2 & 1.1 & 0.6 & 0.1 & 0.3 & 9.2 & 0 \\ 0.18 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0.1 & 0 & 0.3 & 0.7 & 0.3 & 0 & 0 & 0.1 & 0.1 & 0 & 0 & 1.7 & 0\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrr}0.15 & 0.7 & 0.5 & 0.5 & 0.6 & 0.2 & 1.7 & 1.4 & 0.3 & 9.6 & 29 & 12 & 1.6 & 0.8 & 2.9 & 2.9 & 0.2 & 1.6 & 74 & 0.2 & \\ 18.05 & 2.2 & 1.4 & 1.6 & 1.8 & 0.6 & 4.3 & 3.6 & 0.7 & 29 & 94 & 49 & 6.4 & 3.2 & 10 & 12 & 0.8 & 6.2 & 293 & 0.5 & 1 \\ 13.2 & 1.3 & 0.8 & 0.9 & 1 & 0.3 & 1.9 & 1.6 & 0.3 & 12 & 49 & 35 & 6.3 & 3 & 9 & 11 & 0.7 & 5.6 & 115 & 0.2 & 1\end{array}$
 $\begin{array}{rrrrrrrrrrrrrrrrrrr}3.75 & 0.3 & 0.2 & 0.2 & 0.3 & 0.1 & 0.4 & 0.2 & 0 & 0.8 & 3.2 & 3 & 0.9 & 0.8 & 2.8 & 3.3 & 0.1 & 0.8 & 7.8 \\ 33.35 & 2 & 1 & 1.3 & 1.5 & 0.4 & 2.6 & 1.1 & 0.1 & 2.9 & 10 & 9 & 2.6 & 2.8 & 12 & 9 & 0.8 & 3.8 & 25 \\ 0.1\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrr}12.17 & 1 & 0.6 & 0.7 & 0.8 & 0.2 & 1.4 & 0.6 & 0.1 & 2.9 & 12 & 11 & 2.9 & 3.3 & 9 & 9.4 & 0.8 & 6.5 & 28 & 0.1 & 27.21 \\ 1.49 & 0.1 & 0.1 & 0.1 & 0.1 & 0 & 0.1 & 0.1 & 0 & 0.2 & 0.8 & 0.7 & 0.2 & 0.1 & 0.8 & 0.8 & 0.1 & 0.5 & 1.9 & 0 & \\ 6.85 & 0.5 & 0.3 & 0.3 & 0.4 & 0.1 & 0.7 & 0.3 & 0 & 1.6 & 6.2 & 5.6 & 1.2 & 0.8 & 3.8 & 6.5 & 0.5 & 3.6 & 15 & 0 & 15 .\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrr}6.85 & 0.5 & 0.3 & 0.3 & 0.4 & 0.1 & 0.7 & 0.3 & 0 & 1.6 & 6.2 & 5.6 & 1.2 & 0.8 & 3.8 & 6.5 & 0.5 & 3.6 & 15 & 0 \\ 43.55 & 5.3 & 3.3 & 3.9 & 4.4 & 1.5 & 11 & 9.2 & 1.7 & 74 & 29 & 115 & 15 & 7.8 & 25 & 28 & 1.9 & 15 & 659 & 1.9\end{array}$
 $\begin{array}{rrrrrrrrrrrrrrrrrrr}34.43 & 3.3 & 2.1 & 2.4 & 2.7 & 0.7 & 5 & 4.1 & 0.7 & 30 & 126 & 132 & 16 & 7.6 & 23 & 27 & 1.9 & 16 & 297 \\ 24.88 & 2.6 & 1.4 & 1.6 & 1.8 & 0.4 & 3.1 & 2 & 0.3 & 13 & 50 & 37 & 8.1 & 5.2 & 16 & 18 & 1.4 & 11 & 121 \\ 0.4\end{array}$

 | |
| ---: | :--- |
| 2.46 | 0.2 | 0.1 | 0.2 | 0.2 | 0 | 0.3 | 0.2 | 0.1 | 1.6 | 15 | 14 | 3.2 | 1.9 | 5.6 | 6.8 | 0.5 | 4.1 | 34 | 0.1 | 53.04 | 34.33 | 8.8 | 4.1 | 3.7 | 14 | 0.3 | 9.48 | 8.65 | $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}2.56 & 0.2 & 0.2 & 0.2 & 0.2 & 0.1 & 0.3 & 0.2 & 0 & 1.5 & 5.6 & 3.7 & 0.8 & 0.5 & 1.6 & 1.8 & 0.1 & 1.1 & 14 & 0 & 10.44 & 15.5 & 3.7 & 2 & 4.5 & 16 & 0.7 & 14.83 & 10.21 \\ 16.79 & 1.9 & 1.3 & 1.5 & 1.6 & 0.4 & 2.9 & 2.3 & 0.4 & 14 & 53 & 31 & 4.7 & 2.8 & 9.4 & 9.8 & 0.8 & 6 & 130 & 0.4 & 82.32 & 140 & 14 & 4.2 & 16 & 488 & 3.2 & 125.4 & 116.1 \\ 0.25 & 0 & 0 & 0 & 0 & 0 & 0.1 & 0 & 0 & 0.2 & 0.9 & 0.5 & 0.1 & 0 & 0.1 & 0.2 & 0 & 0.1 & 21 & 0 & 1.35 & 2.5 & 0.3 & 0.1 & 0 . & 3 . & 0.1 & 2.55 & 171\end{array}$

 | 1.82 |
| :--- | :--- |

\qquad | 355 | 356 |
| :--- | :--- |
| 9.43 | 0.5 |
| 1.8 | |
| 1.1 | |
| 9.59 | 0.9 |
| 0.62 | 2 |
| 7.03 | 0.3 |
| 7.24 | 4.2 |
| 4.23 | 0.3 |
| 8.8 | 0.5 |
| 9.5 | 0.8 |
| 46 | 4.2 |
| 5.4 | 0.3 |
| 0.83 | 2.2 |
| 7.05 | 4.2 |
| 6.43 | 0.6 |
| 2.75 | 0.2 |
| 9.29 | 1.9 |
| 3.61 | 0.7 |
| 7.65 | 0.4 |
| 2.06 | 0.7 |
| 3.52 | 0.2 |
| 4.18 | 0.2 |
| 3.75 | 0.2 |
| 2.91 | 0.2 |
| 0.68 | 0 |
| 5.07 | 0.3 |
| 2.4 | 0.1 |
| 0.23 | 0 |
| 2.74 | 0.2 |
| 9.94 | 0.6 |
| 5.69 | 0.3 |
| 3.11 | 0.2 |
| 2.84 | 0.2 |
| 9.64 | 0.5 |
| 10.54 | 0.6 |
| 1.52 | 0.1 |
| 7.33 | 0.4 |
| 24.2 | 1.4 |
| 0.14 | 0 |
| 6.12 | 0.9 |
| 1.28 | 0.7 |
| 3.41 | 0.2 |
| 2.52 | 0.2 |
| 2.65 | 0.2 |
| 10.48 | 0.6 |
| 0.37 | 0 |
| 5.45 | 0.3 |
| 5 | 0.3 | $\begin{array}{r}357 \\ 1.31 \\ 1.62 \\ 2.63 \\ 2.77 \\ 0.87 \\ 8.8 \\ 0.48 \\ 2.04 \\ 1.45 \\ 8.19 \\ 1.97 \\ 9.53 \\ 11.75 \\ 0.93 \\ 0.65 \\ 7.14 \\ 2.25 \\ 2.1 \\ 2.48 \\ 0.49 \\ 0.69 \\ 0.62 \\ 0.4 \\ 0.1 \\ 0.7 \\ 0.34 \\ 0.03 \\ 0.39 \\ 1.41 \\ 1.08 \\ 0.57 \\ 0.49 \\ 1.94 \\ 2.44 \\ 0.36 \\ 1.7 \\ 3.44 \\ 0.02 \\ 3.26 \\ 2.42 \\ 0.78 \\ 0.56 \\ 0.57 \\ 1.6 \\ 0.06 \\ 0.83 \\ 0.76 \\ \hline\end{array}$ $\begin{array}{llllllll} & 357 & 358 & 359 & 360 & 361 & 362 & 363 \\ 364 \\ 31 & 1.1 & 6.4 & 0.9 & 5.5 & 7.5 & 1 & 0.6\end{array}$

[^1]396
1.34

 $\begin{array}{llllllllllllllllllllllllllllllll}5.28 & 1.7 & 2.5 & 2.2 & 1.4 & 0.3 & 2.3 & 1.1 & 0.1 & 1.2 & 4.3 & 2.5 & 1.4 & 1.2 & 4.2 & 4.2 & 0.5 & 2.5 & 11 & 0.1 & 7.02 & 4.43 & 1.3 & 1 & 1.1 & 4.6 & 0.2 & 2.38 & 2.18 \\ 5.99 & 1.7 & 1.5 & 1.4 & 1.4 & 0.4 & 2.5 & 1.2 & 0.1 & 1.5 & 5.2 & 3 & 1.6 & 1.4 & 4.8 & 4.9 & 0.6 & 2.9 & 13 & 0.1 & 8.42 & 5.48 & 1.6 & 1.2 & 1.3 & 5.8 & 0.2 & 2.92 & 2.68\end{array}$

 $\begin{array}{lllllllllllllllllllllllllllllllllll}2.4 & 0.4 & 0.5 & 0.4 & 0.3 & 0.1 & 0.6 & 0.3 & 0 & 0.3 & 1.2 & 1 & 0.5 & 0.5 & 1.9 & 2.4 & 0.4 & 1.7 & 3 & 0 & 3 & 2.22 & 0.7 & 0.5 & 0.5 & 1.4 & 0.1 & 0.73 & 0.67\end{array}$
 $\begin{array}{llllllllllllllllllllllllllllllllllll}2.07 & 0.4 & 0.4 & 0.4 & 0.3 & 0.1 & 0.6 & 0.3 & 0 & 0.4 & 1.3 & 1 & 0.5 & 0.4 & 1.6 & 2.1 & 0.4 & 1.8 & 3.2 & 0 & 3.08 & 2.36 & 0.7 & 0.8 & 0.6 & 1.7 & 0.1 & 0.81 & 0.74 \\ 3.25 & 0.6 & 0.3 & 0.4 & 0.5 & 0.1 & 0.8 & 0.4 & 0.1 & 0.8 & 2.9 & 2.5 & 1.3 & 0.8 & 2.5 & 3.2 & 0.7 & 5 & 7.1 & 0 & 7.42 & 5.31 & 1.9 & 1.3 & 1.2 & 3.1 & 0.1 & 1.7 & 1.56\end{array}$
 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}3.3 & 0.5 & 0.6 & 0.6 & 0.4 & 0.1 & 0.8 & 0.4 & 0 & 0.5 & 1.7 & 1.4 & 0.7 & 0.6 & 2.6 & 3.2 & 0.5 & 2.3 & 4.1 & 0 & 4.16 & 3.09 & 1 & 0.7 & 0.7 & 1.9 & 0.1 & 1.02 & 0.4\end{array}$
 $\begin{array}{lllllllllllllllllllllllllllllllllllll}2.29 & 1 & 0.9 & 1 & 0.8 & 0.2 & 1.1 & 0.5 & 0.1 & 0.6 & 1.7 & 1 & 0.6 & 0.5 & 1.8 & 1.8 & 0.2 & 0.9 & 4.1 & 0 & 2.71 & 1.73 & 0.5 & 0.4 & 0.4 & 1.7 & 0.1 & 0.89 & 0.82\end{array}$ $\begin{array}{llllllllllllllllllllllllllllll}2.68 & 1.2 & 1 & 1.1 & 0.9 & 0.2 & 1.4 & 0.6 & 0.1 & 0.6 & 2 & 1.1 & 0.7 & 0.6 & 2.2 & 2.1 & 0.2 & 1.1 & 4.8 & 0 & 3.15 & 2 & 0.6 & 0.5 & 0.5 & 1.9 & 0.1 & 1.04 & 0.95 \\ 3.3 & 1.7 & 0.8 & 0.9 & 1.1 & 0.2 & 1.8 & 0.7 & 0.1 & 0.7 & 2.3 & 1.3 & 0.8 & 0.7 & 2.8 & 2.5 & 0.3 & 1.2 & 5.5 & 0 & 3.64 & 2.2 & 0.7 & 0.5 & 0.5 & 2.1 & 0.1 & 1.17 & 1.07\end{array}$ $\begin{array}{lllllllllllllllllllllllllll}0.76 & 0.3 & 0.2 & 0.2 & 0.2 & 0.1 & 0.8 & 0.3 & 0 & 0.3 & 0.7 & 0.3 & 0.2 & 0.2 & 0.6 & 0.6 & 0.1 & 0.3 & 1.9 & 0 & 0.91 & 0.55 & 0.2 & 0.1 & 0.1 & 0.5 & 0\end{array} 0.29 \quad 0.27$
 $\begin{array}{lllllllllllllllllllllllllllllll}0.24 & 0.1 & 0.1 & 0.1 & 0.1 & 0 & 0.2 & 0.2 & 0 & 0.4 & 0.9 & 0.4 & 0.1 & 0.1 & 0.2 & 0.2 & 0 & 0.1 & 2.3 & 0 & 0.99 & 0.42 & 0.1 & 0.1 & 0.1 & 0.5 & 0 & 0.29 & 0.26 \\ 2.69 & 0.9 & 0.6 & 0.6 & 0.7 & 0.3 & 2.2 & 1.8 & 0.4 & 4.9 & 15 & 6 & 2 & 1 & 2.2 & 3.7 & 0.3 & 2.1 & 38 & 0.3 & 16.45 & 6.78 & 2 & 1.4 & 1.7 & 7.5 & 0.3 & 4.64 & 4.26\end{array}$ $\begin{array}{ll}9.54 & 2.8 & 1.7 & 2 & 2.3 & 0.7 & 5.4 & 4.6 & 0.9 & 15 & 50 & 26 & 8.2 & 4.1 & 7.6 & 15 & 1.1 & 8.4 & 154 & 0.7 & 70 & 26.52 & 8.1 & 5.5 & 6.4 & 28 & 1.1 & 18.64 & 17.13\end{array}$

 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}15.77 & 1.8 & 2.1 & 2.5 & 0.6 & 4.3 & 2 & 0.2 & 3.7 & 15 & 14 & 9.2 & 10 & 17 & 30 & 2.7 & 21 & 36 & 0.2 & 37.02 & 23.86 & 9.3 & 6 & 5.1 & 13 & 0.5 & 7.46 & 6.85 \\ 2.13 & 0.3 & 0.2 & 0.2 & 0.3 & 0.1 & 0.5 & 0.2 & 0 & 0.3 & 1.1 & 1 & 0.5 & 0.4 & 1.7 & 2.7 & 0.3 & 1.9 & 2.7 & 0 & 2.85 & 2.02 & 0.8 & 0.5 & 0.5 & 1.1 & 0 & 0.63 & 0.58\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}9.19 & 1.5 & 0.9 & 1.1 & 1.2 & 0.3 & 2.1 & 1 & 0.1 & 2.1 & 8.4 & 7.4 & 4 & 2.5 & 7.3 & 21 & 1.9 & 12 & 20 & 0.1 & 22.28 & 15.28 & 5.9 & 3.8 & 3.3 & 8.2 & 0.3 & 4.7 & 4.32 \\ 22.94 & 6.6 & 4.1 & 4.8 & 5.5 & 1.9 & 14 & 12 & 2.3 & 38 & 154 & 60 & 20 & 9.8 & 19 & 36 & 2.7 & 20 & 346 & 2.5 & 164.1 & 63.65 & 19 & 13 & 16 & 69 & 2.8 & 44.69 & 41.03\end{array}$
 $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrr}19.13 & 4.4 & 2.7 & 3.2 & 3.6 & 0.9 & 6.7 & 5.5 & 1 & 16 & 70 & 73 & 21 & 10 & 18 & 37 & 2.9 & 22 & 164 & 0.8 & 177.4 & 72.92 & 31 & 15 & 13 & 46 & 1.8 & 29.56 \\ 27.14 \\ 13.13 & 2.7 & 1.7 & 2 & 2.3 & 0.6 & 4 & 2.6 & 0.4 & 6.8 & 27 & 20 & 10 & 6.5 & 12 & 24 & 2 & 15 & 64 & 0.5 & 72.92 & 14.6 & 19 & 10 & 18 & 74 & 3.2 & 57.67 \\ 53.11\end{array}$ $\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr}4.47 & 0.9 & 0.5 & 0.6 & 0.7 & 0.2 & 1.3 & 0.7 & 0.1 & 2 & 8.1 & 7.5 & 4.3 & 2.5 & 4.4 & 9.3 & 0.8 & 5.9 & 19 & 0.1 & 31.07 & 19.11 & 5.2 & 5.4 & 4.5 & 8.1 & 0.4 & 5.3 & 4.87 \\ 3.09 & 0.6 & 0.4 & 0.5 & 0.5 & 0.1 & 0.9 & 0.5 & 0.1 & 1.4 & 5.5 & 4.9 & 2.7 & 1.6 & 2.9 & 6 & 0.5 & 3.8 & 13 & 0.1 & 14.72 & 10.07 & 5.4 & 3.5 & 5.4 & 5.3 & 0.4 & 3.8 & 2.8\end{array}$

 $\begin{array}{llllllllllllllllllllllllllll}4.96 & 1.4 & 0.9 & 1 & 1.2 & 0.3 & 2.1 & 1.7 & 0.3 & 4.6 & 19 & 11 & 3.7 & 2 & 4 & 7.5 & 0.6 & 4.7 & 45 & 0.4 & 29.56 & 57.67 & 5.3 & 3.8 & 17 & 67 & 3.3 & 41.83 \\ 68.78 \\ 4.54 & 1.3 & 0.8 & 1 & 1.1 & 0.3 & 1.9 & 1.6 & 0.3 & 4.3 & 17 & 9.8 & 3.4 & 1.9 & 3.7 & 6.9 & 0.6 & 4.3 & 41 & 0.3 & 27.14 & 53.11 & 4.9 & 2.8 & 12 & 62 & 2.2 & 68.78 \\ 31.01\end{array}$
 000 H 000 h 000 N M్ల్ల 000 000 000 u 000 N $000 \mathrm{\omega}$ 000 000 苞 000 N 000 山్山
 $000^{\text {w．}}$
 000 0001 000 000 W 000
 000 V 000 W 00000000000000000001000000000000000000000000 $\begin{array}{ll}380 & 381 \\ 0 & 0 \\ & \end{array}$ $000 \mathrm{~N}_{\mathrm{N}}^{\mathrm{w}}$ N000 $000 \stackrel{(\underset{\sim}{\omega}}{\underset{\sim}{~}}$ R000

 000 ê 000 O． 000
 $000 \not 0$

APPENDIX F

2016 \& 2035 Model Plots

NWFRPM v1.1-2016 Roadway Volu
TPD No. 4249 - Escambia DSAP

NWFRPM v1.1-2035 Roadway Volu
TPD No. 4249 - Escambia DSAP

APPENDIX G

Beeline Corridor Arterial Alternative

RoADWAY CAPACITY ANALYSIS (2035 ALT B B

Roadway	Segment	$\begin{aligned} & \# \text { of } \\ & \text { Lns } \end{aligned}$	$\begin{array}{\|c} \text { Los } \\ \text { Std } \end{array}$	Capacity	$\begin{gathered} 2035 \\ \text { Background } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2035 \\ \text { DSAP } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2035 \\ \text { Total } \\ \text { Tolume } \end{gathered}$	$2035 \mathrm{~V} / \mathrm{C}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{aligned} & \text { Meets } \\ & \text { Std? } \end{aligned}$
Interstate 10	Alabama SL to Beeline Corridor	4	C	59,800	54,149	5,890	60,039	1.00	D	N
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	4	c	59,800	52,659	18,303	70,962	1.19	D	N
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	4	c	59,800	59,551	18,540	78,091	1.31	E	N
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	59,800	62,384	14,980	77,364	1.29	E	N
Interstate 10	Pensacola Blvd (US 29) to --110/Davis Hwy	6	c	90,500	79,639	16,968	96,607	1.07	D	N
Interstate 10	I-110/Davis Hwy to US 90	6	c	90,500	75,908	2,369	78,277	0.86	C	Y
Interstate 110	1-10 to Airport Blvd	10	c	151,700	126,685	12,439	139,124	0.92	c	Y
Interstate 110	Airport Blvd to Fairfield Dr	8	c	120,100	88,875	6,162	95,037	0.79	C	Y
Interstate 110	Fairifild Dr to Chase St	6	C	90,500	74,601	5,102	79,703	0.88	C	Y
US 29	CR 4 to SR 97	4	c	41,100	12,956	6,989	19,945	0.49	B	Y
US 29	SR 97 to Molino Rd (CR 182)	4	c	45,400	16,874	8,817	25,691	0.57	B	Y
US 29	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	4	c	45,400	19,503	12,079	31,582	0.70	C	Y
US 29	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	4	c	45,400	19,358	15,923	35,281	0.78	C	Y
US 29	Quintette Rd (CR 184) to Well Line Rd	4	c	45,400	19,784	31,853	51,637	1.14	D	N
US 29	Well Line Rd to Muscogee Rd	4	D	36,700	19,707	37,545	57,252	1.56	F	N
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	36,700	31,845	29,627	61,472	1.67	F	N
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	36,700	42,550	21,281	63,831	1.74	F	N
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to l-10	6	D	55,300	51,464	14,368	65,832	1.19	F	N
US 29/Pensacola Blvd	l-10 to W St	4	D	36,700	43,676	8,608	52,284	1.42	F	N
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	4	D	36,700	43,483	3,839	47,322	1.29	F	N
Molino Rd (CR 182)	CR 99 to US 29	2	D	13,800	1,438	586	2,024	0.15	B	Y
Barrineau Park Rd (CR 196)	CR 97 to Schitko Rd	2	D	13,800	38	115	153	0.01	B	Y
Barrineau Park Rd (CR 196)	Schitko Rd to US 29	2	D	13,800	74	151	225	0.02	B	Y
Barrineau Park Rd (CR 196)	US 29 to CR 95A	2	D	13,800	342	1,029	1,371	0.10	,	Y
CR 297A	Pine Forest Rd (SR 297) to CR 97	2	E	14,850	5,423	12,301	17,724	1.19	F	N
CR 297A	CR 97 to Kingsfield Rd	2	E	14,850	3,586	1,427	5,013	0.34	B	Y
CR 297A	Kingssield Rd to Muscogee Rd (CR 184)	2	E	14,850	5,741	1,606	7,347	0.49	B	Y
Jack's Branch Rd (CR97)	CR 297A to Kingsfield Rd	2	E	14,850	429	6,405	6,834	0.46	B	Y
Jack's Branch Rd (CR97)	Kingstield Rd to Muscogee Rd	2	E	14,850	240	6,622	6,862	0.46	B	Y
Jack's Branch Rd (CR97)	Muscogee Rd to Power Blvd Ext.	2	D	13,680	244	9,053	9,297	0.68	C	Y
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	2	D	13,680	288	14,429	14,717	1.08	F	N
Jack's Branch Rd (CR97)	River Annex Rd to Quintette Rd Ext.	2	D	13,680	2,006	5,259	7,265	0.53	B	Y
Jack's Branch Rd (CR97)	Quintette Rd. Ext. to Schifko Rd	2	D	13,680	2,796	5,553	8,349	0.61	C	Y
Jack's Branch Rd (CR97)	Schifko Rd to Barrineau Park Rd (CR196)	2	D	13,680	2,048	4,442	6,490	0.47	B	Y
CR 97/CR196	Barrineau Park Rd (CR196) to CR 99	2	D	13,680	1,155	1,746	2,901	0.21	B	Y
SR 97	US 29 TO CR 99	2	D	13,800	5,956	1,828	7,784	0.56	C	Y
CR 99	CR 97 to CR 182	2	D	13,800	1,155	1,746	2,901	0.21	B	Y
CR 99	CR 182 to CR 97A	2	D	22,200	1,017	1,521	2,538	0.11	B	Y
Quintette Rd Ext.	Jack's Branch Rd to Beeline Corridor	2	E	14,850	789	4,761	5,550	0.37	B	Y
Quintette Rd Ext.	Beeline Corridor to N-S Rd	2	E	14,850	567	8,419	8,986	0.61	C	Y
Quintette Rd Ext.	N-S Rd to US 29	2	E	14,850	589	12,937	13,526	0.91	C	Y
Quintette Rd (CR 184)	US 29 to CR 95A	,	D	14,850	4,262	12,602	16,864	1.14	F	N
Quintette Rd (CR 184)	CR 95A to County Line	2	D	14,850	5,743	7,229	12,972	0.87	C	Y
Muscogee Rd (CR 184)	Alabama St. Line to River Annex Rd	2	E	14,850	1,365	4,695	6,060	0.41	B	Y
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	2	E	13,680	938	25,526	26,464	1.93	F	N
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	2	E	13,680	1,025	22,016	23,041	1.68	F	N
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N -S Rd	2	E	14,850	1,270	16,813	18,083	1.22	F	N
Muscogee Rd (CR 184)	N -S Rd to Jack's Branch Rd (S)	2	E	14,850	1,232	17,488	18,720	1.26	F	N
Muscogee Rd (CR 184)	Jack's Branch Rd (S) to CR 297A	2	F	14,850	991	13,153	14,144	0.95	D	Y
Muscogee Rd (CR 184)	CR 297A to US 29	2	E	14,850	6,520	9,169	15,689	1.06	F	N
Pine Forest Rd	Roberts Rd to Nine Mile Rd (Alt 90)	2	,	13,680	7,366	1,944	9,310	0.68	c	Y
Pine Forest Rd	Nine Mile Rd (Alt 90) to l-10	3	D	17,325	20,548	9,036	29,584	1.71	F	N
Pine Forest Rd	1-10 to Mobile Hwy (US 90)	4	D	36,700	25,407	9,529	34,936	0.95	C	Y
Old Kingsfield Rd	Beulah (CR 99) to N -S Rd	2	E	14,850	1,131	6,791	7,922	0.53	B	Y
Old Kingsfield Rd	N-S Rd to Jack's Branch Rd (CR 97)	2	E	14,850	663	451	1,114	0.08	B	Y
Kingsfield Rd Ext.	Beulah (CR 99) to N -S Rd	2	E	14,850	2,378	1,743	4,121	0.28	B	Y
Kingsfield Rd Ext.	N-S Rd to Jack's Branch Rd (CR 97)	2	E	14,850	646	8,703	9,349	0.63	C	Y
Kingsfield Rd	Jack's Branch Rd (CR 97) to CR 297A	2	,	14,850	1,121	6,753	7,874	0.53	B	Y
Kingsfield Rd	CR 297A to US 29	2	E	14,850	4,665	7,206	11,871	0.80	C	Y
Kingsfield Rd	US 29 to SR 292/Chemstrand Rd	2	-	14,850	5,242	2,267	7,509	0.51	B	Y
River Annex Rd	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	2	E	14,850	1,476	11,246	12,722	0.86	C	Y

Roadway	Segment	$\begin{aligned} & \# \text { \#f } \\ & \text { of } \end{aligned}$	$\begin{gathered} \text { LOS } \\ \text { Std } \\ \hline \end{gathered}$	Capacity	$\begin{gathered} 2035 \\ \text { Background } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2035 \\ \text { DSAP } \\ \text { Volume } \end{gathered}$	$\begin{gathered} 2035 \\ \text { Total } \\ \text { volume } \\ \hline \end{gathered}$	$2035 \mathrm{~V} / \mathrm{C}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{aligned} & \text { Meets } \\ & \text { Std?? } \end{aligned}$
Beulah Rd (CR 99)	Muscogee Rd (CR 184) to Kingsfield Rd	2	E	14,850	1,867	11,112	12,979	0.87	C	Y
Beulah Rd (CR 99)	Kingsfield Rd to $\mathrm{l}-10$	2	E	14,850	4,246	12,483	16,729	1.13	F	N
Beulah Rd (CR 99)	1-10 to Nine Mile Rd (Alt 90)	2	E	14,850	9,384	11,594	20,978	1.41	F	N
Beulah Rd (CR 99)	Nine Mile Rd to Mobile Hwy (US 90)	2	D	14,850	5,169	9,041	14,210	0.96	D	Y
Nine Mile Rd (Alt 90)	Mobile Hwy (90) to Beulah Rd (CR 99)	2	D	16,500	7,566	838	8,404	0.51	B	Y
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to l-10	2	D	16,500	17,378	14,445	31,823	1.93	F	N
Nine Mile Rd (Alt 90)	$1-10$ to Pine Forest Rd (CR 297)	4	D	36,700	15,693	1,137	16,830	0.46	B	Y
Nine Mile Rd (Alt 90)	Pine Forest Rd (CR 297) to US 29	4	D	36,700	26,111	5,098	31,209	0.85	c	Y
Nine Mile Rd (Alt 90)	US 29 to Chemstrand Rd (CR 749)	4	D	36,700	27,243	8,113	35,356	0.96	C	Y
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	36,700	34,859	5,425	40,284	1.10	F	N
Nine Mile Rd (Alt 90)	University Pkwy to Davis Hwy	4	D	36,700	23,469	1,937	25,406	0.69	B	Y
Mobile Hwy (US 90)	Alabama St. Line to Nine Mile Rd (Alt 90)	2	D	22,200	7,671	838	8,509	0.38	C	Y
Mobile Hwy (US 90)	Nine Mile Rd (Alt 90) to Beulah Rd (CR 99)	2	D	16,500	1,598	0	1,598	0.10	B	Y
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	16,500	14,878	6,083	20,961	1.27	F	N
Mobile Hwy (US 90)	Klondike Rd to Pine Forest Rd (SR 297)	2	D	16,500	11,416	2,154	13,570	0.82	C	Y
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	36,700	36,771	4,862	41,633	1.13	F	N
Mobile Hwy (US 90)	Michigan Ave (SR 290) to Edison Dr	4	D	36,700	29,041	3,960	33,001	0.90	C	Y
Mobile Hwy (US 90)	Edison Dr to Fairfield Dr	6	D	50,300	39,578	2,729	42,307	0.84	D	Y
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	33,200	34,289	137	34,426	1.04	E	N
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	16,500	15,226	2,221	17,447	1.06	F	N
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	16,500	13,401	4,568	17,969	1.09	F	N
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	16,500	17,258	3,602	20,860	1.26		N
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	14,850	15,746	221	15,967	1.08	F	N
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	36,700	35,456	36,348	71,804	1.96	F	N
Chemstrand Rd (CR 749)	Old Chemstrand Rd to Kingsfield Rd	2	E	14,850	6,188	99	6,287	0.42	B	Y
Chemstrand Rd (CR 749)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	8,702	1,487	10,189	0.69	c	Y
Chemstrand Rd (CR 749)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	14,283	322	14,605	0.98	D	Y
Old Chemstrad Rd (CR 297)	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	6,929	2,783	9,712	0.65	c	Y
Palatox Hwy (CR 95A)	US 29 (Molino) to Molino Rd (CR 182)	2	E	14,850	1,930	0	1,930	0.13	B	Y
Palafox Hwy (CR 95A)	Molino Rd (CR 182) to Barrineau Park Rd (CR 196)	2	E	14,850	3,937	4	3,941	0.27	B	Y
Palafox Hwy (CR 95A)	Barrineau Park Rd (CR 196) to Quintette Rd (CR 184)	2	E	14,850	3,935	154	4,089	0.28	B	Y
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	14,850	11,635	3,605	15,240	1.03	F	N
Palafox St (CR 95A)	US 29 (Cantonment) to Old Chemstrand Rd (CR 297)	2	E	14,850	7,857	4,059	11,916	0.80	C	Y
Palafox St (CR 95A)	Old Chemstrand Rd (CR 297) to Kingsfield Rd	2	E	14,850	5,471	3,453	8,924	0.60	c	Y
Palafox St (CR 95A)	Kingsfield Rd to Ten Mile Rd	2	E	14,850	7,436	5,710	13,146	0.89	C	Y
Palafox St (CR 95A)	Ten Mile Rd to Nine Mile Rd (Alt 90)	2	E	14,850	8,767	3,699	12,466	0.84	c	Y
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to l-10	2	E	14,850	14,951	2,000	16,951	1.14	F	N
Palafox St (CR 95A)	1-10 to Pensacola Blvd (US 29)	2	E	14,850	11,614	805	12,419	0.84	c	Y
Ten Mile Rd	Stefani Rd to US 29	2	E	14,850	3,072	592	3,664	0.25	B	Y
Ten Mile Rd	US 29 to Chemstrand Rd (CR 749)	2	E	14,850	7,757	963	8,720	0.59	C	Y
Well Line Rd Ext.	Jack's Branch Rd to N -S Rd	2	E	14,850	43	11,307	11,350	0.76	C	Y
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	14,850	0	16,051	16,051	1.08	F	N
Well Line Rd	Santa Rosa Rd to US 29	2	D	14,850	308	10,465	10,773	0.73	C	Y
Santa Rosa Rd	Muscogee Rd to Well Line Rd	2	D	14,850	307	5,389	5,696	0.38	B	Y
Beeline Corridor	US 29 to N -S Rd	6	D	55,300	3,850	12,141	15,991	0.29	B	Y
Beeline Corridor	N-S Rd to Quintette Rd Ext.	6	D	55,300	3,764	12,000	15,764	0.29	B	Y
Beeline Corridor	Quintette Rd Ext. to Jack's Branch Rd (CR 97)	6	D	55,300	3,542	17,140	20,682	0.37	B	Y
Beeline Corridor	Jack's Branch Rd (CR 97) to Muscogee Rd (CR 184)	6	D	55,300	3,794	12,593	16,387	0.30	B	Y
Beeline Corridor	Muscogee Rd (CR 184) to Kingsfield Rd Ext.	6	D	55,300	5,216	26,377	31,593	0.57	B	Y
Beeline Corridor	Kingsfield Rd Ext. to l-10	6	D	55,300	7,928	24,194	32,122	0.58	B	Y
N-SRd	Barrineau Park Rd (CR 196) to Mathison Rd Ext.	4	D	36,700	0	4,480	4,480	0.12	B	Y
N-SRd	Mathison Rd Ext. to Quintette Rd Ext.	4	D	36,700	0	9,014	9,014	0.25	B	Y
N-S Rd	Quintette Rd Ext. to Well Line Rd Ext.	4	D	36,700	109	18,056	18,165	0.49	B	Y
N-S Rd	Well Line Rd Ext. to Jack's Branch Rd	4	D	36,700	153	22,915	23,068	0.63	B	Y
N-S Rd	Jack's Branch Rd (CR 97) to Kingssield Rd	4	D	36,700	116	14,632	14,748	0.40	B	Y
N-S Rd	Kingsfield Rd to Jack's Branch Rd/Divine Farm	4	D	36,700	352	11,291	11,643	0.32	B	Y
Success Rd Ext.	Power Blvd Ext. to Well Line Rd Ext.	4	E	33,030	0	18,250	18,250	0.55	B	Y
Power Blvd Ext.	US 29 to N -S Rd	4	E	33,030	0	19,235	19,235	0.58	B	Y
Schitko Rd	Jack's Branch Rd (CR 97) to CR 196	2	E	14,850	37	102	139	0.01	B	Y
Mathison Rd Ext.	Schifko Rd to N-S Rd	2	E	14,850	0	306	306	0.02	B	Y
Mathison Rd Ext.	N -S Rd to US 29	2	E	14,850	0	1,495	1,495	0.10	B	Y

DEFICIENCIES

Roadway	Segment	$\begin{aligned} & \text { \# of } \\ & \text { Lns } \end{aligned}$	$\begin{gathered} \text { LOS } \\ \text { Std } \end{gathered}$	$\begin{aligned} & 2035 \\ & \text { LOS } \end{aligned}$	$\begin{gathered} 2035 \\ \text { V/C } \end{gathered}$
Interstate 10	Alabama SL to Beeline Corridor	4	C	D	1.00
Interstate 10	Beeline Corridor to Nine Mile Rd (Alt 90)	4	C	D	1.19
Interstate 10	Nine Mile Rd (Alt 90) to Pine Forest Rd (SR 297)	4	C	E	1.31
Interstate 10	Pine Forest Rd (SR 297) to Pensacola Blvd (US 29)	4	C	E	1.29
Interstate 10	Pensacola Blvd (US 29) to I-110/Davis Hwy	6	C	D	1.07
US 29	Quintette Rd (CR 184) to Well Line Rd	4	C	D	1.14
US 29	Well Line Rd to Muscogee Rd	4	D	F	1.56
US 29	Muscogee Rd (CR 184W) to Kingsfield Rd	4	D	F	1.67
US 29	Kingsfield Rd to Nine Mile Rd (Alt 90)	4	D	F	1.74
US 29/Pensacola Blvd	Nine Mile Rd (Alt 90) to I-10	6	D	F	1.19
US 29/Pensacola Blvd	I-10 to W St	4	D	F	1.42
US 29/Pensacola Blvd	W St to Massachusetts/Pace Blvd	4	D	F	1.29
CR 297A	Pine Forest Rd (SR 297) to CR 97	2	E	F	1.19
Jack's Branch Rd (CR97)	Power Blvd Ext. to River Annex Rd	2	D	F	1.08
Quintette Rd (CR 184)	US 29 to CR 95A	2	D	F	1.14
Muscogee Rd (CR 184)	River Annex Rd to Beeline Corridor	2	E	F	1.93
Muscogee Rd (CR 184)	Beeline Corridor to Jack's Branch Rd	2	E	F	1.68
Muscogee Rd (CR 184)	Jack's Branch Rd (N) to N-S Rd	2	E	F	1.22
Muscogee Rd (CR 184)	N-S Rd to Jack's Branch Rd (S)	2	E	F	1.26
Muscogee Rd (CR 184)	CR 297A to US 29	2	E	F	1.06
Pine Forest Rd	Nine Mile Rd (Alt 90) to I-10	3	D	F	1.71
Beulah Rd (CR 99)	Kingsfield Rd to l-10	2	E	F	1.13
Beulah Rd (CR 99)	I-10 to Nine Mile Rd (Alt 90)	2	E	F	1.41
Nine Mile Rd (Alt 90)	Beulah Rd (CR 99) to l-10	2	D	F	1.93
Nine Mile Rd (Alt 90)	Chemstrand Rd (CR 749) to University Pkwy	4	D	F	1.10
Mobile Hwy (US 90)	Beulah Rd (CR 99) to Klondike Rd	2	D	F	1.27
Mobile Hwy (US 90)	Pine Forest Rd (SR 297) to Michigan Ave (SR 290)	4	D	F	1.13
Mobile Hwy (US 90)	Fairfield Dr to Pace Rd	4	D	E	1.04
Blue Angel Pkwy (SR 173)	Pine Forest Rd (SR 297) to Mobile Hwy (US 90)	2	D	F	1.06
Blue Angel Pkwy (SR 173)	Mobile Hwy (US 90) to Saufley Field Rd	2	D	F	1.09
Blue Angel Pkwy (SR 173)	Saufley Field Rd to US 98	2	D	F	1.26
Saufley Field Rd (CR 296)	Blue Angel Pkwy (SR 173) to Mobile Hwy (US 90)	2	D	F	1.08
Michigan Ave (SR 296)	Mobile Hwy (US 90) to US 29	4	D	F	1.96
Palafox Hwy (CR 95A)	Quintette Rd to US 29 (Cantonment)	2	E	F	1.03
Palafox St (CR 95A)	Nine Mile Rd (Alt 90) to I-10	2	E	F	1.14
Well Line Rd Ext.	N-S Rd to Santa Rosa Rd	2	E	F	1.08

NWFRPM v1.1-2035 Internal Roadway Volumes (Alternative 1)

NWFRPM v1.1-2035 Internal Roadway Volumes (Alternative 2)
TPD No. 4249 - Escambia DSAP

EXHIBIT 3-B

UTILITIES ANALYSIS

Detailed Public Facilities Plan - Utilities

Potable Water

A conceptual potable water plan was prepared based upon the projected Detailed Specific Area Plan (DSAP) land use program. The resulting utility infrastructure map is shown as Figure A, Water Infrastructure Map. Potable Water is supplied to the DSAP by four different utility providers. These providers are: Cottage Hill Waterworks, Emerald Coast Utilities Authority, Farm Hill Utilities, and Molino Utilities.

Potable water demand for the DSAP was calculated utilizing Escambia County's adopted level of service (LOS) for new development. The LOS for potable water service within Escambia County is 250 gallons per residential connection per day. For non-residential uses, the LOS requirements are based upon and Equivalent Residential Connection (ERC) to be calculated by the service provider, at the time of application. For the purposes of this study, an average value ERC was used nonresidential development.

The proposed water distribution system, shown in Figure A, will connect to the existing potable water mains currently owned by the four existing potable water providers. Tables A. 1 and A.2, provide build-out potable water demand and supply by provider.

Table A.1: Potable Water Demands (GPD)

Total DSAP	Dwelling Units	Square Feet	ERC Factor	LOS (GPD/household)	Total Demand (GPD)
Residential	23,373		1	250	$5,843,250$
Non-residential		$12,160,000$	0.17	250	516,800

TOTAL $\mathbf{6 , 3 6 0 , 0 5 0}$

Cottage Hill Units	Square Feet	ERC Factor	LOS (GPD/household)	Total Demand (GPD)	
Residential	1,394		1	250	348,500
Non-residential		$2,515,000$	0.17	250	106,888

TOTAL
455,388

Molino	Dwelling Units	Square Feet	ERC Factor	LOS (GPD/household)	Total Demand (GPD)
Residential	8,442		1	250	$2,110,500$
Non-residential		215,000	0.17	250	9,138

TOTAL
2,119,638

Farm Hill	Dwelling Units	Square Feet	ERC Factor	LOS (GPD/household)	Total Demand (GPD)
Residential	13,535		1	250	3,383,750
Non-residential		9,430,000	0.17	250	400,775
TOTAL					3,784,525
ECUA	Dwelling Units	Square Feet	ERC Factor	LOS (GPD/household)	Total Demand (GPD)
Residential	2		1	250	500
Non-residential		0			0
TOTAL					500
Table A.2: Potable Water Supply (GPD)					

Provider	Capacity* Pre-Condition	DSAP Impact	Capacity Post Condition
Cottage Hill	$1,816,000$	455,388	$1,360,613$
Farm Hill	$2,300,000$	$3,784,525$	$-1,484,525$
Molino	$2,601,400$	9,138	$2,592,263$
ECUA	$51,930,000$	500	$51,929,500$
Totals	$\mathbf{5 8 , 6 4 7 , 4 0 0}$	$\mathbf{4 , 2 4 9 , 5 5 0}$	$\mathbf{5 4 , 3 9 7 , 8 5 0}$

*Available Facility Capacity as reported in Comprehensive Plan Implementation Annual Report FY 2009/2010.
Each potable water provider currently has available facility capacity in the existing, or predevelopment, condition. Without redefining the current service area boundaries for the four potable water providers, the impact of proposed growth within the DSAP is shown as an impact to the current capacity for each of the providers.

The resulting capacity at ultimate build-out, reported as Capacity Post Condition in the above table, indicates a need for plant expansion for Farm Hill Utilities, in the order of an additional 1.5 million gallons per day. This shortfall can be resolved through plant expansion, or through establishing a "wholesale potable water service agreement" with Molino Utilities or Emerald Coast Utilities Authority, to provide the required amount of potable water. It should be noted that the reported capacity for the potable water providers is by total service area. This analysis does not take into account future potable water demand outside of the defined DSAP; therefore, it may be assumed that the actual post condition capacity would be less than reported in Table A.2.

Needed demand corresponding with the proposed 5 -year plan is approximately $1 / 10^{\text {th }}$ of the total non-residential development and approximately $1 / 7^{\text {th }}$ the total number of residential units within the Farm Hill Utility service boundary. The resulting demand is less than 500,000 gallons per day, which
is well within the capacity of Farm Hill Utilities. The remainder of the proposed 5-year plan for the DSAP is 1,800 residential units, falling within the service boundary of Molino Utilities. These 1,800 units are only $1 / 5^{\text {th }}$ of the total residential units, well within the available capacity for Molino Utilities.

In both the 5 -year plan and build-out scenario, extensive potable water distribution main construction is needed, particularly with the Farm Hill Utility service boundary. At final build-out, it is likely that Farm Hill Utility will need to construct a fourth water tower to meet the needed water demand, particularly during times of peak water demand.

The final design of the conceptual potable water infrastructure must comply with, and be permitted through, the Florida Department of Environmental Protection Agency. The infrastructure design must be able to deliver Average Day and Peak Day demands, meet fire flow requirements, and maintain a constant residual pressure no less than 20 psi. Potable water systems must be designed with proper control valves, air release valves, and fire hydrants. All components of the potable water distribution system must comply with the standards established by the respective water authority.

Funding for any expansion or improvements to the potable distribution and water treatment systems within a service area are typically generated by the respective Utility Authority. These funds can be generated through user fees, impact fees, bond issues, or developer contributions, as noted in the Escambia County Comprehensive Plan Implementation Annual Report FY 2009/2010.

Wastewater

A conceptual wastewater plan was prepared based upon the projected DSAP land use program. The resulting utility infrastructure map is shown as Figure B, Wastewater Infrastructure Map. Wastewater is supplied to the region by a single provider, Emerald Coast Utilities Authority (ECUA).

Wastewater demand for the DSAP was calculated utilizing Escambia County's adopted level of service (LOS) for new development. The level of service standards for wastewater service within Escambia County is 210 gallons per residential connection per day. For non-residential uses, the level of service requirements are based upon and Equivalent Residential Connection (ERC) to be calculated by the service provider, at the time of application. For the purposes of this study, an average value ERC was used non-residential development.

The proposed wastewater distribution system, shown in Figure B, will connect to the existing sanitary sewer systems currently owned by ECUA. At the DSAP level, it is difficult to accurately estimate the sizing of wastewater gravity systems. As an alternative, collection service areas are shown to represent the extent of infrastructure construction needed to meet the build-out demand.

Table A.3: Wastewater Demands as Average Day and Peak Day (GPD)

Total DSAP	Dwelling Units	Square Feet	ERC Factor	LOS (GPD/HH)	Total Demand (GPD)	PEAK LOS (GPD/HH)	Total Demand PEAK (GPD)
Residential	23,373		1	210	$4,908,330$	350	$8,180,550$
Non- residential		$12,160,000$	0.17	210	434,112	350	723,520

Table A.4: Wastewater Supply (GPD)

Provider	Capacity* Pre-Condition	DSAP Impact	Capacity Post Condition
ECUA	$7,613,000$	$5,342,442$	$2,270,558$

*Available Facility Capacity as reported in Comprehensive Plan Implementation Annual Report FY 2009/2010.
Tables A. 3 and A.4, calculate wastewater demand and supply at build-out. It appears that ECUA currently has capacity to accommodate the projected DSAP build-out condition. As with potable water, it should be noted that the reported capacity for the potable water providers is by total service area. This analysis does not take into account future wastewater demand outside of the defined DSAP; therefore, it may be assumed that the actual post condition capacity would be less than reported in Table A.4. It should also be noted that, with the data currently available, a Peak Day Demand comparison cannot be accurately estimated for the DSAP.

The 5 -yr wastewater demand is similar in magnitude to that of potable water. The existing wastewater treatment plant has the capacity available to handle the increased demand due to expected growth within the 5 -year plan; however, there is no wastewater collection system constructed within the DSAP area, with the exception being a small portion of gravity sewer within the residential neighborhood along the southeast DSAP border.

Figure B, Wastewater Infrastructure Map, shows an estimated thirty-seven (37) gravity sewer service area boundaries, represented by a circle (Radius $=2,000 \mathrm{ft}$). Due to the isolated nature of many of the proposed development parcels, it is likely that sewage collection systems will not be connected through large gravity main networks. Limited by topography and geometry, small service areas will be most probable. Central to the service area boundary is a lift station/pump station. If development timing allows, manifold force main systems can be replaced with "daisy-chained" sewer systems, allowing for less expensive pumping designs.

The final design of the conceptual wastewater Infrastructure must conform with, and be permitted through, the Florida Department of Environmental Protection Agency. The infrastructure design must be able to handle Average Day and Peak Day design flows. Gravity sewer systems must be design to operate within the range of allowable flow velocities. Pump stations with manifolding
force mains must operate in the "all-on" condition and be able to perform a complete "pump-out." All components of the wastewater collection system must comply with the standards established by ECUA.

Funding for any expansion or improvements to the wastewater collection and treatment systems will be generated by ECUA. These funds can be generated through user fees, impact fees, bond issues, developer contributions, or state and federal grants or appropriations, as noted in the Escambia County Comprehensive Plan Implementation Annual Report FY 2009/2010.

Solid Waste

Solid Waste service is provided to the region by Escambia County. Escambia County has an adopted solid waste LOS of 6 pounds per capita per day. Table A. 5 provides an estimate of solid waste creation (demand) based upon the number of residential units and projected persons per household within the DSAP.

Table A.5: Solid Waste Demand (lbs/capita/day)

Total DSAP	Number of Units	Persons Per Household (PPH)	Projected Population	LOS (Lbs/capita per day)	Total Demand (Tons per year)	Total Demand (Lbs per day)
Residential	23,373	2.45	57,264	6	62,704	343,583

Table A. 6 estimates the impact of the DSAP development program on the existing capacity of the Perdido Landfill. The resulting additional annual tonnage reduces the estimated lifespan of the landfill from 70 years to 58 years.

Table A.6: Solid Waste Capacity

Provider	Current* Annual Tonnage	Estimated* Lifespan (yrs)	DSAP Annual Tonnage	New Lifespan (yrs)
Escambia County	296,000	70	62,868	58

*Available Facility Capacity as reported in Comprehensive Plan Implementation Annual Report FY 2009/2010.

Stormwater

Stormwater management system improvements for this region of Escambia County should be developed as regional systems accounting, where possible, for multiple areas of improved development. Attempts should be made to design stormwater treatment and attenuation systems,
(i.e. wet and dry ponds, swales, underground chambers, exfiltration trenches, etc.) and supporting conveyance pipes and swales as systems.

In such areas as the Regional Employment District, Town Center, Village Center, and Neighborhood Center, joint-use systems should be required for development, contributing to the overall aesthetic benefit of these "centers." All developments are required to meet or exceed the standards established by the Northwest Florida Water Management District as well as meet the performance measures specified in the current Comprehensive Plan.

County storm water capital improvements are funded using the Local Option Sales Tax (LOST). Private developments are responsible constructing on-site stormwater systems, as well as infrastructure required to connect the on-site systems to the "regional" county stormwater management systems.

EXHIBIT 4

DETAILED NATURAL RESOURCE ANALYSIS

Detailed Natural Resource Analysis

Protected Wildlife Species/Potential Occurrence

The US Fish and Wildlife Service (USFWS) and the Florida Fish and Wildlife Conservation Commission (FFWCC) compile lists of wildlife species considered to be under some risk of extinction. These species are categorized as either endangered or threatened. The FFWCC utilizes an additional category, Species of Special Concern (SCC), for several animal species that may ultimately be listed as endangered or threatened. The list of protected animal species known to occur within Escambia County was reviewed as well as specific database occurrence records and reviews of recent literature, such as "Florida Imperiled Fish Species Investigation", and "Closing the Gaps in Florida's Wildlife Habitat Conservation System". In addition, databases [e.g. Florida Natural Areas Inventory (FNAI), FFWCC] with protected species occurrence information were queried and information from such reports includes species that have been documented to occur, or have a potential to occur, within the vicinity of the project.

To initiate the Threatened and Endangered species review, vegetative communities occurring within the study area were mapped following the Florida Land Use, Cover and Forms Classifications System (FLUCFCS) to Level III (Florida Department of Transportation, January 1999) based on Geographical Information Systems (GIS) databases developed by the Florida Geographic Data Library from Northwest Florida Water Management District (NWFWMD) 1995 data. Due to the size of the subject parcel and the format of this report, a detailed FLUCFCS map exhibit is not included.

US Department of Agriculture soil maps of Escambia County, 1999, 2007, and 2007 Digital Ortho Quarter Quadrangles, and NWFWMD 1995 land use maps were studied to assess the apparent locations of habitats in the existing and pre-plantation landscapes that could support a protected species.

Limited field reviews of upland habitats were conducted during the wetland delineation fieldwork and groundtruthing efforts completed in $2010 \& 2011$. Areas reviewed included upland habitats that were traversed while performing the wetland delineation and groundtruthing efforts.

Detailed field reviews are forthcoming and will be utilized to verify and modify habitat assessments, and document listed species occurrence. The species and habitat/species appropriate field methodologies will be consistent with discussions with FFWCC personnel, and review of the FNAI report.

Protected Plant Species

The USFWS and the State of Florida also compile lists of protected plant species. The USFWS classifies protected plants as either endangered or threatened, while the State of Florida categorized protected plants as endangered, threatened, or commercially exploited. The State's plant list is administered and maintained by The Florida Department of Agriculture and Consumer Services (FDACS) (581.185-187, Florida Statutes).

No federally protected plant species are listed within the project boundaries. Thirty (30) FFWCC protected plant species could potentially occur within the project boundaries. Thirteen of these species are designated as endangered, sweet shrub (Calycantbus floridus), panhandle lily (Lilium iridollae), hummingbird flower (Macranthera flammea), green adder's mouth (Malaxis unifolia), primrose flowered butterwort (Pinguicula primuliflora), yellow fringless orchid (Platanthera integra), white-topped pitcher plant (Sarracenia leucophylla), silky camellia (Stewartia malacondendron), incised groove-bur (Agrimonia incise), pondspice (Litsea aestivalis), Alabama spiny-rod (Matelea alabamensis), small flowered meadowbeauty (Rhexia parviflora), and Florida flame azalea (Rhododendron austrinum) and sixteen (16) are designated as threatened, baltzell's sedge (Carex baltzelli), spoon-leaved sundew (Drosera intermedia), heartleaf (Hexastylis arifolia), Florida anise (Illicium floridanum), mountain laurel (Kalmia latifolia), gulf coast lupine (Lupinus westianus), Chapman's butterwort (Pinuicula planifolia), large leaved jointweed (Polygonella macrophylla), sweet pitcher plant (Sarracenia rubra), hairy wild indigo (Baptisia calycosa var. villosa), bog button (Lachnacaulon digynum), panhandle meadowbeauty (Rhexia salicifolia), pineland hoary pea (Tephrose mohrii), Chapman's crownbeard (Verbesina chapmaniz), Kral's yellow eyed grass (Xyris stricta var. obscura), and Harper's yellow eyed grass (Xyris scabrifolia). These species are typically found with wet flatwood meadows, hillside seepage areas or bogs. These types of habitats are found within the project limits and botanical reviews will occur within appropriate habitats

Protected Mammals

No federally protected mammals are listed within the project boundaries.

Protected Reptiles

One (1) federally protected reptile is described as potentially occurring within the project boundaries; the eastern indigo snake (Drymarchon couperi), listed as threatened by state and federal agencies, is strongly associated with the xeric sandridge habitat commonly referred to as longleaf pine-scrub oak association. These areas are dominated by longleaf pine (Pinus palustris), turkey oak (Quercus laevis) and wiregrass (Aristida stricta). Regarded as fire dependent, these plant communities have an average burn frequency of 5 to 10 years. The overwhelming majority of known populations of eastern indigo snakes utilize gopher tortoise burrows as refuges and over-wintering sites.

Although gopher tortoise (Gopherus polyphemus) burrows likely exist on portions of the property, the USFWS does not require "scoping burrows" for the presence of the eastern indigo snake in Escambia County. The rational for this protocol being that no specimens of the species have been confirmed in Escambia County Florida in many decades, and they are not expected to be encountered within the project limits.

The American alligator (Alligator mississippiensis), could occur within the sloughs of Cow Devil or Jacks Branch, but has been removed from Federal protection. During our limited field reviews no other listed/protected reptiles were observed within the project boundaries. It is expected that the gopher tortoise- Fl threatened, alligator snapping turtle (Macrochelys temminckii)- Fl SSC, and Florida pine snake (Pituophis melanolencus mugitus) - Fl SSC could be potentially be found within appropriate habitat within the project boundaries.

Protected Avian

Three (3) federally protected avian species are listed as potentially occurring within the project boundaries, red-cockaded woodpecker (Picoides borealis), peregrine falcon (Falco peregrinum), and wood stork (Mycteria americana). Five (5) FFWCC protected avian species may be present within the project boundaries. One (1) is designated as threatened, southeastern American kestrel (Falco spaverius paulus), and four (4) are designated as species of special concern, little blue heron (Egretta caerulea), snowy egret (Egretta thula), tricolored heron (Egretta tricolor), and osprey (Pandion baleaetus). Habitats within the parcel are not suitable to support the red cockaded woodpecker which requires open stands of pines with a minimum age of 80 to 120 years, depending on the site. Longleaf pines are most commonly used, but other species of southern pine are also acceptable. Dense stands (stands that are primarily hardwoods, or that have a dense hardwood understory) are avoided. Foraging habitat is provided in pine and pine hardwood stands 30 years old or older with foraging preference for pine trees 10 inches or larger in diameter. In good, well-stocked, pine habitat, sufficient foraging substrate can be provided on 80 to 125 acres.

Wood storks use a variety of freshwater and estuarine wetlands for nesting, feeding, and roosting. Freshwater colony sites must remain inundated throughout the nesting cycle to protect against predation and abandonment. Foraging sites occur in shallow, open water where prey concentrations are high enough to ensure successful feeding. Wood storks have a unique feeding technique and require higher prey concentrations than other wading birds. Optimal water regimes for the wood stork involve periods of flooding, during which prey (fish) population increases, alternating with dryer periods, during which receding water levels concentrate fish at higher densities coinciding with the stork's nesting season.

Protected Amphibians

Flatwoods salamander (Ambystoma cingulatum) is the only listed amphibian that has the potential to occur within the project site. Flatwoods salamander is both state and federally listed as threatened. The distribution of flatwoods salamander in Florida includes two regions, a northeastern and western. The subject property is located within the western region which includes the Panhandle from southern Jefferson County west to Escambia County. Occurrence is known in thirteen counties within this region with the only exception being Escambia County. It appears this species has been extirpated from Escambia County and therefore is unlikely to occur within the project boundaries.

Protected Fish

There are (2) two fish species that potentially occur within the project site which include, Blackmouth shiner (Netropis melanostomus) Fl-Threatened, Bluenose shiner (Pteronotropis welaka) FlSpecies of Special Concern, Crystal darter (Crystallaria asprella) Fl-Threatened.

Blackmouth shiner presently maintains viable populations in a number of tributaries of Blackwater River near Milton, Florida and Yellow River. There are no known occurrences in Escambia County, Florida. This species occupies areas of densely vegetated backwaters, and is therefore difficult to monitor and census. It is possible for populations to exist within the backwaters of Perdido River. Detailed census work in backwaters of Perdido River watershed is required to determine extent and presence.

Bluenose shiners occupy a variety of habitats and are widely distributed throughout the Panhandle of Florida. Threats to their survival are through over collection by aquarist both commercial producers and hobbyists. Our review of available literature did not reveal any known occurrence of Bluenose shiner within the Perdido River watershed.

Ecological Communities

Wetlands

The approximate limits of onsite jurisdictional wetlands and surface waters were determined through a comprehensive review of soil survey data, national wetland inventory map, digital ortho quarter quads, Federal Emergency Management Act floodplain maps, Escambia County GIS wetland layer data and significant groundtruthing. Groundtruthing efforts included the field analysis of plant communities, soils, and indirect hydrologic indicators. Those wetland boundary lines delineated during groundtruthing efforts were located using a Trimble GeoXT Global Positioning System. This technology is able to achieve sub-meter accuracy following post processing of the data; however several variables including canopy coverage, topography, and atmospheric conditions can degrade signal strength resulting in accuracies of 1-3 meters. The resultant data was used to generate a overall map of wetland resources within the subject parcel (see Figure A).

The delineation of wetlands during groundtruthing was accomplished using methods prescribed in the US Army Corps of Engineers (USACOE) Interim Regional Supplement to the Corps of Engineers Wetland Delineation Manual: Atlantic and Gulf Coastal Plain Region and The Florida Wetlands Delineation Manual.

Wetlands and or surface waters identified within the subject parcel may be subject to the regulatory jurisdiction of the USACOE under Section 404 of the Clean Water Act (33 U.S.C. 1344) or Section 10 of the Rivers and Harbors Act (33 U.S.C. 403) and Florida Department of Environmental Protection (FDEP) and NWFWMD under Chapter 62-340 F.A.C.

Bottomland Swamp Forest (FLUCFCS 615)

The Bottomland Swamp Forest cover type is associated with Jacks Branch and Cow Devil Creek. The stream and associated tributaries are perennial, originating in the adjacent sandy uplands and fed by groundwater recharge. Flood events are rare and are associated with extreme rain events, otherwise flows are relatively consistent. This generally is a closed canopy system dominated by slash pine (Pinus elliottii), black gum (Nyssa sylvatica), and sweetbay magnolia (Magnolia virginiana) within the upper canopy, and maintaining a dense understory of black titi (Cliftonia monophylla), red maple (Acer rubrum) and large gallberry (Ilex glabra). This forested community rarely burns and is commonly found in an inundated or saturated condition.

Hydric Pine Flatwoods (FLUCFC 620)
Hydric Pine Flatwoods occupy a large portion of the properties wetlands and are dominated in the overstory by slash pine. The understory is generally comprised of dense shrubs including black titi, large leaf gallberry (Ilex coriacea), myrtle-leaved holly (I. myrtifolia), and sweetbay magnolia (Magnolia
virginiana). Ground cover is sparse. These wetlands occur on relatively flat, poorly drained terrain with sandy soils.

Wet Prairies (FLUCFC 623)

Wet Prairies are treeless plains with ground cover ranging from sparse to dense grasses and herbaceous plants. These areas occur on low, relatively flat, poorly drained terrain and were commonly found in areas where shrub and tree cover was discouraged. Common vegetation observed included woolly sunbonnets (Chaptalia tomentosa), blunt spikerush (Eleocharis obtusa), common rush (Juncus effusus), bighead rush (J. megacephalus), bog button (Lacbnocaulon anceps), velvet panicum (Panicum scoparium), torpedo grass [(P. repens)-an invasive species], warty panic grass (Panicum verrucosum), shortbristle horned beaksedge (Rhynchospora corniculata), and Elliott's yellow-eyed grass (Xyris elliotti).

Bay and Titi Swamp (FLUCFC 611, 614;)
This community comprises the vast majority of the headwater wetlands (unnamed and Jacks Branch, Cow Devil Creek) associated with Perdido River. The Bay Swamp and Titi Swamp communities are closely associated and interlaced. For this reason they were not quantified separately. These wetland communities have developed at the base of slopes where seepage has maintained a saturated peat substrate. The titi swamp is an ecotonal area with an overstory dominated by slash pine, black titi, swamp cyrilla (Cyrilla racemiflora). The bay swamp community, found lower in elevation, is characterized by a densely forested wetland community dominated by evergreen hardwoods including sweetbay magnolia, swamp red bay (Persea borbonia), black gum, and cypress (Taxodium distichum). The subcanopy stratums are sparsely dominated by shrubs including dahoon holly, fetterbush (Lyonia lucida), and large leaf gallberry and ferns including royal (Osmunda regalis), cinnamon (O. cinnamomea), and Virginia and netted chain fern (Woodwardia virginica, and W. aerolata).

Blackwater Streams (FLUCFC 615)

Blackwater Streams are perennial or intermittent watercourses originating in sandy lowlands where there are extensive wetlands with organic soils storing rainfall and discharging the flow through these streams. The streams are typically tea colored because of the tannins and other dissolved organic matter originating from the source wetlands. These streams are often bordered by emergent vegetation and have sandy bottoms with organic layers over the sand. These Blackwater Streams are smaller tributaries that flow to Perdido River.

Floodplain Swamps (FLUCFC 610)

Floodplain Swamps occur on flooded soils along stream channels and in low spots and oxbows within river floodplains. Dominant trees are usually buttressed hydrophytic trees such as cypress and tupelo (Nyssa , spp.) and the understory and ground cover are generally very sparse. The swamp land along the Perdido River is the most prevalent floodplain swamp within the property. Common wetland plants of floodplain swamps in the area include tupelo, red titi, myrtle-leaved holly, black titi, dahoon holly (I. cassine), wax myrtle (Myrica cerifera), soft rush, laurel greenbrier, leather fern (Arostichum, spp.), royal fern (Osmunda regalis), lizard's tail (Saururus cernuus), and marsh fern (Thelppteris palustris).

Atlantic White Cedar (FLUCFC 623)

The Atlantic White Cedar (Chamaecyparis thyoides) community is a near monoculture that is geographically restricted to the immediate floodplain of the Perdido River. Atlantic white cedars grow extremely slow and usually grow on the natural levees of the Perdido River. The canopy layer is mostly comprised of only white cedars or in mixed stands which most often include red maps and black gum trees. The shrub layer, which is most developed in open cedar stands include large leaf gallberry (Ilex coriacea, gallberry, and sweet pepper bush (Clethra alnifolia). The herbaceous stratum is mostly dominated by sparse ferns including cinnamon and royal fern and often a continuous carpet of sphagnum moss that covers the ground surface.

Reservoirs (FLUCFC 530)
A number of manmade impoundments are located within the northwestern portions of the property. These open water systems have been created from impounding intermittent, and first order streams. Due to the fact that these historically were created within wetlands the USACOE and/or FDEP and NWFWMD maintain regulatory jurisdictional of these open water systems. Most impoundments located within the subject property maintain relatively consistent water levels and can support gamefish such as brim and largemouth bass.

Uplands

Coniferous Pine Plantations (FLUCFCS 441)

This upland community is comprised exclusively of pine forests artificially generated by planting seedling stock or seeds. These stands are characterized by high numbers of trees per acre and their uniform appearance. The Coniferous Pine Plantation habitat varies in quality with the primary distinction being canopy coverage. Vegetation within the community is comprised primarily of: slash pine (Pinus elliottii), yaupon holly (Ilex vomitoria), bracken fern (Pteridium aquilinum), reindeer moss (Cladonia sp.), gopher apple (Licania michauxit), and wiregrass. There are slight variations in subcanopy and groundcover stratums depending on the age of the each plantation and canopy coverage.

Disturbed Lands (FLUCFCS 740)

The Disturbed Land covertype has been subject to intense timber harvesting activities during the past few years. The canopy and subcanopy were largely clear cut and devoid of any vegetation. Successional species such as dog fennel (Eupatorium capillifolium), blackberry (Rubus spp.), golden rod (Solidago spp.) and slim bluestem (Andropogon virginicus) dominated the groundcover.

Upland Pine Forests (FLUCFCS 410)

The Upland Pine Forest community is characterized by a canopy that is at least 66 percent dominated by coniferous species. Vegetation within the Upland Pine Forest community is primarily dominated by longleaf pine and slash pine with live oak (Quercus virginiana), large flowering magnolia (Magnolia grandiflora), yaupon holly, gallberry, fetterbush, saw palmetto (Serenoa repens), runner oak (Quercus pumila), bracken fern (Pteridium aquilinum), grapevine (Vitis rotundifolia), catbrier (Smilax bonanox), and wiregrass.

Pine Mesic Oak (FLUCFCS 414)
This community is characterized by an open canopy forest of slash pine and mesic oak species. Other typical plants include: fetterbush, wax myrtle, common persimmon (Diospyros virginiana), gallberry , American holly (Ilex opaca), bracken fern (Pteridium aquilinum), and wiregrass.

Roads and Highways (Primitive/Trails) (FLUCFCS 8146)
There are several dirt roads, which provide access to the various upland areas located throughout the property. These roads were constructed from native soils and are approximately 12 to 15 feet in width. Fill material was used for roads which crossed wetland habitats. Most of these roads were used for silvicultural activities. They are devoid of vegetation.

EXHIBIT 5

HOUSING ANALYSIS

Housing Demand Analysis

Consistent with Future Land Use Element Policy 5.6.1(III)(2)(c) regarding the Mid-West Optional Sector Plan's (OSP) required preliminary Detailed Specific Area Plan (DSAP) elements, this analysis has been prepared to address the need for affordable and workforce housing. It has been based on the maximum DSAP development program and addresses its potential impact on existing neighborhoods and infill opportunities throughout the County. The following sections and tables demonstrate the existing/projected housing and housing-related conditions in the County, and form the basis of the ultimate housing demand conclusions. The methodology used for this analysis has been based on an accepted statewide program developed by the East Central Florida Regional Planning Council (ECFRPC).

Development Program and Employment Generation

The Escambia County Detailed Specific Area Plan (DSAP) will generate a variety of employment opportunities, with the majority of jobs coming from the proposed Regional Employment District and mixed-use Centers. The job type and corresponding average annual wages associated with the project's land use mix is outlined in Table A. 1 below

TABLE A.1: Annual Wage Estimates for DSAP (2010 ES 202 Data)

Land Use Type	NAICS Title	NAICS Code	2010 Q3 ES 202 Quarterly Wage	Effective Annual Wage
Office	Professional \& Business Services	1024	$\$ 9,556$	$\$ 38,224$
Industrial	 Warehousing	$48-49$	$\$ 11,142$	$\$ 44,568$
Retail	Retail	$44-45$	$\$ 6,248$	$\$ 24,992$

Source: NAICS Title \& Code and wages from the 2010 Quarterly Census of Employment and Wages for Escambia Co.
Total employment to be generated by the DSAP is based on the land use mix and development program for this site. The projected total employment by industry is presented in Tables A. 2 and A. 3 below.

TABLE A.2: Development Program by Industry Type

Land Use Type	Unit	Phase I $\mathbf{2 0 1 2 - 2 0 1 7 ~}$	Total Development Program
Office	Sq. Ft.	N / A	$3,577,500$
Retail	Sq. Ft.	500,000	$1,628,750$
Industrial	Sq. Ft.	500,000	$6,300,000$

TABLE A.3: Employment Generation by Phase

Land Use Type	Unit	Total Development Program	Units per Employee*	Phase I $\mathbf{2 0 1 2 - 2 0 1 7}$	Total
Office	Sq. Ft.	$3,577,500$	350	N/A	10,221
Retail	Sq. Ft.	$1,628,750$	675	741	2,413
Industrial	Sq. Ft.	$6,300,000$	500	1,000	12,600

*Nelson, A.C. (2004). Planners Estimating Guide, Projecting Land-use and Facility Needs

Determining Demand and Affordability

Upon establishing the development program and base employment generation ratios, the affordable housing assessment involved determining the number and distribution of wages of full-time equivalent (FTE) non-construction workers generated by the project. The study utilized the U.S. Department of Housing and Urban Development (HUD) FY 2011 Income Limits Data Set for Pensacola-Ferry Pass-Brent, FL Metropolitan Statistical Area (MSA). The assumptions provided by HUD are as follows:

Income Model Assumptions for Pensacola-Ferry Pass-Brent MSA:

- Pensacola-Ferry Pass-Brent MSA Median Income for FY $2011=\$ 58,400$
- Very Low Income: (less than 50% of Median) $=$ Less than $\$ 29,200$
- Low Income: $(50 \%$ to 80% of Median) $=\$ 29,200$ to $\$ 46,720$
- Moderate Income: $(80 \%$ to 120% of Median $)=\$ 46,720$ to $\$ 70,080$

Escambia County Headship Rates and Percent of Single and Multi-Worker Households by Income:

- Headship Rate, Very Low Income $=35.9 \%$
- Headship Rate, Low Income $=60.1 \%$
- Headship Rate, Moderate Income $=72.9 \%$

Single/Multi- Worker Household Ratios:

- Very Low Income $=80.5 \% / 19.5 \%$
- Low Income $=63.0 \% / 37.0 \%$
- Moderate Income $=45.4 \% / 54.6 \%$

Employee numbers were distributed around the industry average wage for each industry title. From this distribution, the ECFRPC spreadsheet model then calculates the corresponding headship rates and number of single and multi-worker households by income level. Demand models for Phase I as well as the entire Escambia County DSAP development program are presented in Tables B. 1 - B. 7 below.

TABLE B.1: Demand Model for Phase I Retail Employment

MODEL: ESCAMBIA COUNTY 2010						MEDIAN INCOME: \$58,400						
Very Low: Less than \$29,200				Low: \$29,200 to \$46,720				Moderate: \$46,720 to \$70,080				
Land Use:	Retail	NAICS Code		44-45	Avg. Wage:	\$24,992	Quarter	3rd 2010	(SEE NOTE BELOW)			
Income Group	Wage Ranges		Midpoint	Number of Employees	Total Wages	Heads of Household	Single Worker HHs	HH Income	2- Worker HHs	HH Income	3+ Worker HHs	HH Income
	Low	High										
Very Low	\$13,932	\$17,263	\$15,598	104	\$1,622,140	37	19	\$15,598	15	\$27,280	3	\$34,533
	\$17,264 $\$ 19,730$	$\begin{aligned} & \$ 19,729 \\ & \$ 22,195 \end{aligned}$	$\$ 18,497$ $\$ 20,963$	45 245	$\begin{array}{r} \$ 832,343 \\ \$ 5,135,813 \end{array}$	16 88	8 45	\$18,497 $\$ 20,963$	6 35	$\$ 32,350$ $\$ 36,663$	1	$\begin{aligned} & \$ 40,951 \\ & \$ 46,411 \end{aligned}$
	\$19,730	\$22,195	\$20,963	245	\$5,135,813	88	45	\$20,963	35	\$36,663	8	\$46,411
	\$22,196	\$24,661	\$23,429	111	\$2,600,564	40	21	\$23,429	16	\$40,976	3	\$51,871
	\$24,662	\$27,127	\$25,895	21	\$543,785	8	4	\$25,895	3	\$45,289	1	\$57,330
	\$27,128	\$29,199	\$28,164	0	\$0	0	0	\$28,164	0	\$49,258	0	\$62,354
Low	\$29,200	\$32,060	\$30,630	0		0	0	\$30,630	0	\$53,572	0	\$67,815
	\$32,061	\$34,526	\$33,294	82	\$2,730,067	49	19	\$33,294	24	\$58,230	6	\$73,712
	\$34,527	\$36,992	\$35,760	37	\$1,323,102	22	9	\$35,760	11	\$62,543	3	$\$ 79,172$
	\$36,993	\$39,458	\$38,226	0	\$0	0	0	\$38,226	0	\$66,856	0	\$84,631
	\$39,459	\$41,925	\$40,692	96	\$3,906,432	58	23	\$40,692	28	\$71,170	7	\$90,092
	\$41,926	\$44,391	\$43,159	0	\$0	0	0	\$43,159	0	\$75,484	0	\$95,553
	\$44,392	\$46,719	\$45,556	0	\$0	0	0	\$45,556	0	\$79,677	0	\$100,860
Moderate	\$46,720	\$49,323	\$48,022	0	\$0	0	0	\$48,022	0	\$83,990	0	\$106,320
	\$49,324	\$51,790	\$50,557	0	\$0	0	0	\$50,557	0	\$88,424	0	\$111,933
	\$51,791	\$54,256	\$53,024	0	\$0	0	0	\$53,024	0	\$92,738	0	\$117,394
	\$54,257	\$56,722	\$55,490	0	\$0	0	0	\$55,490	0	\$97,051	0	\$122,854
	\$56,723	\$59,188	\$57,956	0	\$0	0	0	\$57,956	0	\$101,364	0	\$128,313
	\$59,189	\$61,654	\$60,422	0	\$0	0	0	\$60,422	0	\$105,677	0	\$133,773
	\$61,655	\$64,121	\$62,888	0	\$0	0	0	\$62,888	0	\$109,991	0	\$139,234
	\$64,122	\$66,587	\$65,355	0	\$0	0	0	\$65,355	0	\$114,305	0	\$144,695
	\$66,588	\$70,079	\$68,334	0	\$0	0	0	\$68,334	0	\$119,515	0	\$151,290
	\$71,080	\$71,520	\$71,300	0	\$0	0	0	\$71,300	0	\$124,704	0	\$157,858
(A) Total em	yees and	ges of this	odel:	741	\$18,694,244							
(B) Total wag	of 741 em	oyees at \$,992	741	\$18,519,072		Total wa	es plus 10\%:	\$20,37	979		

TABLE B.2: Demand Model for Phase I Industrial Employment

MODEL: ESCAMBIA COUNTY 2010	MEDIAN INCOME: \$58,400

	ry Low:	ss than \$	9,200		Low: \$,200 to \$46,7			Mode	te: \$46,720	to \$70,	
Land Use:	Industria	NAIC	Code	48-49	Avg. Wage:	\$49,484	Quarter	4th 2010		(SEE NO	BELOV	
Income Group	Wage	anges	Midpoint	Number of Employees	Total Wages	Heads of Household	Single Worker	HH Income	2Worker	HH Income	3+ Worker	HH Income
	Low	High					HHs		HHs		HHs	
Very Low	\$13,932	\$17,263	\$15,598	0	\$0	0	0	\$15,598	0	\$27,280	0	\$34,533
	\$17,264	\$19,729	\$18,497	0	\$0	0	0	\$18,497	0	\$32,350	0	\$40,951
	\$19,730	\$22,195	\$20,963	0	\$0	0	0	\$20,963	0	\$36,663	0	\$46,411
	\$22,196	\$24,661	\$23,429	0	\$0	0	0	\$23,429	0	\$40,976	0	\$51,871
	\$24,662	\$27,127	\$25,895	18	\$466,101	6	3	\$25,895	3	\$45,289	1	\$57,330
	\$27,128	\$29,199	\$28,164	5	\$140,818	2	1	\$28,164	1	\$49,258	0	\$62,354
Low	\$29,200	\$32,060	\$30,630	30	\$918,900	18	7	\$30,630	9	\$53,572	2	\$67,815
	\$32,061	\$34,526	\$33,294	55	\$1,831,143	33	13	\$33,294	16	\$58,230	4	\$73,712
	\$34,527	\$36,992	\$35,760	0	\$0		0	\$35,760	0	\$62,543	0	\$79,172
	\$36,993	\$39,458	\$38,226	13	\$496,932	8	3	\$38,226	4	\$66,856	1	\$84,631
	\$39,459	\$41,925	\$40,692	25	\$1,017,300	15	6	\$40,692	7	\$71,170	2	\$90,092
	\$41,926	\$44,391	\$43,159	150	\$6,473,775	90	35	\$43,159	43	\$75,484	12	\$95,553
	\$44,392	\$46,719	\$45,556	150	\$6,833,325	90	35	\$45,556	43	\$79,677	12	\$100,860
Moderate	\$46,720	\$49,323	\$48,022	30	\$1,440,645	22	9	\$48,022	10	\$83,990	3	\$106,320
	\$49,324	\$51,790	\$50,557	0	\$0	0	0	\$50,557	0	\$88,424	0	\$111,933
	\$51,791	\$54,256	\$53,024	416	\$22,057,776	303	119	\$53,024	141	\$92,738	44	\$117,394
	\$54,257	\$56,722	\$55,490	8	\$443,916	6	2	\$55,490	3	\$97,051	1	\$122,854
	\$56,723	\$59,188	\$57,956	40	\$2,318,220	29	11	\$57,956	14	\$101,364	4	\$128,313
	\$59,189	\$61,654	\$60,422	0	\$0	0	0	\$60,422	0	\$105,677	0	\$133,773
	\$61,655	\$64,121	\$62,888	0	\$0	0	0	\$62,888	0	\$109,991	0	\$139,234
	\$64,122	\$66,587	\$65,355	60	\$3,921,270	44	17	\$65,355	20	\$114,305	6	\$144,695
	\$66,588	\$70,079	\$68,334	0	\$0	0	0	\$68,334	0	\$119,515	0	\$151,290
$\$ 71,080$ $\$ 71,520$ $\$ 71,300$ 0 (A) Total employees and wages of this model: 1,000					\$0	0	0	\$71,300	0	\$124,704	0	\$157,858
					\$48,360,120							
				1,000	\$49,484,000		Total wages plus 10\%:		\$54,432,400			

TABLE B.3: Summary Demand Model for Phase I Employment

MODEL: ESCAMBIA COUNTY 2010						MEDIAN INCOME: \$58,400						
Very Low: Less than \$29,200					Low: \$29,200 to \$46,720				Moderate: \$46,720 to \$70,080			
Land Use:	Retail/Ind. NAICS Code:	NAICS Code:		N/A	Avg. Wage:	\$37,238	Quarter	4th 2010	(SEE NOTE BELOW)			
Income Group	Wage Ranges		Midpoint	Number of Employees	Total Wages	Heads of Household	Single Worker HHs	HH Income	2Worker HHs	HH Income	$3+$Worker HHs	$\underset{\text { Income }}{\mathrm{HH}}$
	Low	High										
Very Low	\$13,932	\$17,263	\$15,598	104	\$1,622,140	37	19	\$15,598	15	\$27,280	3	\$34,533
	\$17,264	\$19,729	\$18,497	45	\$832,343	16	8	\$18,497	6	\$32,350	1	\$40,951
	\$19,730	\$22,195	\$20,963	245	\$5,135,813	88	45	\$20,963	35	\$36,663	8	\$46,411
	\$22,196	\$24,661	\$23,429	111	\$2,600,564	40	21	\$23,429	16	\$40,976	3	\$51,871
	\$24,662	\$27,127	\$25,895	39	\$1,009,886	14	7	\$25,895	6	\$45,289	1	\$57,330
	\$27,128	\$29,199	\$28,164	5	\$140,818	2	1	\$28,164	1	\$49,258	0	\$62,354
Low	\$29,200	\$32,060	\$30,630	30	\$918,900	18	7	\$30,630	9	\$53,572	2	\$67,815
	\$32,061	\$34,526	\$33,294	137	\$4,561,210	82	32	\$33,294	40	\$58,230	11	\$73,712
	\$34,527	\$36,992	\$35,760	37	\$1,323,102		9	\$35,760	11	\$62,543	3	\$79,172
	\$36,993	\$39,458	\$38,226	13	\$496,932	8	3	\$38,226	4	\$66,856	1	\$84,631
	\$39,459	\$41,925	\$40,692	121	\$4,923,732	73	28	\$40,692	35	\$71,170	9	\$90,092
	\$41,926	\$44,391	\$43,159	150	\$6,473,775	90	35	\$43,159	43	\$75,484	12	\$95,553
	\$44,392	\$46,719	\$45,556	150	\$6,833,325	90	35	\$45,556	43	\$79,677	12	\$100,860
Moderate	\$46,720	\$49,323	\$48,022	30	\$1,440,645	22	9	\$48,022	10	\$83,990	3	\$106,320
	\$49,324	\$51,790	\$50,557	0	\$0	0	0	\$50,557	0	\$88,424	0	\$111,933
	\$51,791	\$54,256	\$53,024	416	\$22,057,776	303	119	\$53,024	141	\$92,738	44	\$117,394
	\$54,257	\$56,722	\$55,490	8	\$443,916	6	2	\$55,490	3	$\begin{aligned} & \$ 97,051 \\ & \$ 101,36 \end{aligned}$	1	\$122,854
	\$56,723	\$59,188	\$57,956	40	\$2,318,220	29	11	\$57,956	13	$\begin{array}{r} 4 \\ \$ 105,67 \end{array}$	4	\$128,313
	\$59,189	\$61,654	\$60,422	0	\$0	0	0	\$60,422	0	$\begin{array}{r} 7 \\ \$ 109,99 \end{array}$	0	\$133,773
	$\$ 61,655$	$\$ 64,121$	\$62,888	0	\$0	0	0	\$62,888	0	$\begin{array}{r} 1 \\ \$ 114,30 \end{array}$	0	\$139,234
	\$64,122	\$66,587	\$65,355	60	\$3,921,270	44	17	\$65,355	20	$\begin{array}{r} 5 \\ \$ 119,51 \end{array}$	6	\$144,695
	\$66,588	\$70,079	\$68,334	0	\$0	0	0	\$68,334	0	+119,51	0	\$151,290
	\$71,080	\$71,520	\$71,300	0	\$0	0	0	\$71,300	0	$\begin{array}{r} \$ 124,70 \\ 4 \end{array}$	0	\$157,858
(A) Total empl	yees and wa	ges of this	odel:	1,741	\$67,054,363							
(B) Total wage	of 12,600	mployees at	\$37,238	1,741	\$64,831,358		Total wag	s plus 10\%:	\$71,31	,494		

Table B.4: Demand Model for Total Development Retail Employment

TABLE B.5: Demand Model for Total Development Office Employment

MODEL: ESCAMBIA COUNTY 2010						MEDIAN INCOME: \$58,400						
Very Low: Less than \$29,200					Low: \$29,200 to \$46,720			Moderate: \$46,720 to \$70,080				
Land Use:	Office	NAICS Code:		1024	Avg. Wage:	\$44,608	Quarter:	3rd 2010	(SEE NOTE BELOW)			
Income Group	Wage Ranges		Midpoint	Number of Employees	Total Wages	Heads of Household	Single Worker HHs	HH Income	$\begin{gathered} \text { 2- } \\ \text { Worker } \\ \text { HHs } \end{gathered}$	HH Income	$3+$Worker HHs	HH Income
	Low	High										
Very Low	\$13,932	\$17,263	\$15,598	0	\$0	0	0	\$15,598	0	\$27,280	0	\$34,533
	\$17,264	\$19,729	\$18,497	0	\$0	0	0	\$18,497	0	\$32,350	0	\$40,951
	\$19,730	\$22,195	\$20,963	0	\$0	0	0	\$20,963	0	\$36,663	0	\$46,411
	\$22,196	\$24,661	\$23,429	1,761	\$41,257,589	632	327	\$23,429	250	\$40,976	55	\$51,871
	\$24,662	\$27,127	\$25,895	1,046	\$27,085,647	376	194	\$25,895	149	\$45,289	33	\$57,330
	\$27,128	\$29,199	\$28,164	0	\$0	0	0	\$28,164	0	\$49,258	0	\$62,354
Low	\$29,200	\$32,060	\$30,630	0	\$0	0	0	\$30,630	0	\$53,572	0	\$67,815
	\$32,061	\$34,526	\$33,294	0	\$0	0	0	\$33,294	0	\$58,230	0	\$73,712
	\$34,527	\$36,992	\$35,760	527	\$18,845,257	317	124	\$35,760	153	\$62,543	41	\$79,172
	\$36,993	\$39,458	\$38,226	0	\$0	0	0	\$38,226	0	\$66,856	0	\$84,631
	\$39,459	\$41,925	\$40,692	0	\$0	0	0	\$40,692	0	\$71,170	0	\$90,092
	\$41,926	\$44,391	\$43,159	0	\$0	0	0	\$43,159	0	\$75,484	0	\$95,553
	\$44,392	\$46,719	\$45,556	0	\$0	0	0	\$45,556	0	\$79,677	0	\$100,860
Moderate	\$46,720	\$49,323	\$48,022	0	\$0	0	0	\$48,022	0	\$83,990	0	\$106,320
	\$49,324	\$51,790	\$50,557	0	\$0	0	0	\$50,557	0	\$88,424	0	\$111,933
	\$51,791	\$54,256	\$53,024	5,932	\$314,535,402	4324	1691	\$53,024	2011	\$92,738	623	\$117,394
	\$54,257	\$56,722	\$55,490	955	\$52,992,473	696	272	\$55,490	324	\$97,051	100	\$122,854
	\$56,723	\$59,188	\$57,956	0	\$0	0	0	\$57,956	0	\$101,364	0	\$128,313
	\$59,189	\$61,654	\$60,422	0	\$0	0	0	\$60,422	0	\$105,677	0	\$133,773
	\$61,655	\$64,121	\$62,888	0	\$0	0	0	\$62,888	0	\$109,991	0	\$139,234
	\$64,122	\$66,587	\$65,355	0	\$0	0	0	\$65,355	0	\$114,305	0	\$144,695
	\$66,588	\$70,079	\$68,334	0	\$0	0	0	\$68,334	0	\$119,515	0	\$151,290
	\$71,080	\$71,520	\$71,300	0	\$0	0	0	\$71,300	0	\$124,704	0	\$157,858
(A) Total employees and wages of this model: (B) Total wages of 2413 employees at $\$ 44,608$				10,221	$\$ 454,716,367$							
				10,221	\$455,938,368		Total wages plus 10\%:		\$501,532,205			

TABLE B.6: Demand Model for Total Development Industrial Employment

TABLE B.7: Summary Demand Model for Total Development

MODEL: ESCAMBIA COUNTY 2010						MEDIAN INCOME: \$58,400						
Very Low: Less than \$29,200				Low: \$29,200 to \$46,720					Moderate: \$46,720 to \$70,080			
Land Use:	N/A	NAICS Code:		N/A	Avg. Wage:	\$39,695	Quarter:		(SEE NOTE BELOW)			
Income Group	Wage Ranges		Midpoint	Number of Employees	Total Wages	Heads of Household	Single Worker HHs	HH Income	2- Worker HHs	HH Income	$3+$ Worker HHs	HH Income
	Low	High										
Very Low	\$13,932	\$17,263	\$15,598	338	\$5,271,955	121	63	\$15,598	48	\$27,280	11	\$34,533
	\$17,264	\$19,729	\$18,497	145	\$2,681,993	52	27	\$18,497	21	\$32,350	5	\$40,951
	\$19,730	\$22,195	\$20,963	798	\$16,728,075	286	148	\$20,963	113	\$36,663	25	$\$ 46,411$
	\$22,196	\$24,661	$\$ 23,429$	2,123	\$49,738,706	762	394	\$23,429	302	\$40,976	66	\$51,871
	\$24,662	\$27,127	\$25,895	1,336	\$34,595,052	480	248	\$25,895	190	\$45,289	42	\$57,330
	\$27,128	\$29,199	\$28,164	61	\$1,717,974	22	11	\$28,164	9	\$49,258	2	\$62,354
Low	\$29,200	\$32,060	\$30,630	367	\$11,241,210	220	86	\$30,630	106	\$53,572	28	\$67,815
	\$32,061	\$34,526	$\$ 33,294$	964	\$32,094,934	578	226	\$33,294	279	\$58,230	74	$\$ 73,712$
	\$34,527	\$36,992	$\$ 35,760$	648	\$23,172,156	389	152	$\$ 35,760$	187	$\$ 62,543$	50	$\$ 79,172$
	\$36,993	\$39,458	\$38,226	164	\$6,268,982	98	38	$\$ 38,226$	47	$\$ 66,856$	13	\$84,631
	\$39,459	\$41,925	\$40,692	630	\$25,635,960	378	147	\$40,692	182	\$71,170	48	\$90,092
	\$41,926	\$44,391	\$43,159	1,850	\$79,843,225	1110	433	\$43,159	535	\$75,484	142	\$95,553
	\$44,392	\$46,719	\$45,556	1,920	\$87,466,560	1152	449	\$45,556	555	\$79,677	147	\$100,860
Moderate	$\$ 46,720$	$\$ 49,323$	$\$ 48,022$	387	\$18,584,321	282	110	$\$ 48,022$	131	$\$ 83,990$	41	\$106,320
	$\$ 49,324$	$\$ 51,790$	$\$ 50,557$	0	\$0	0	0	$\$ 50,557$	0	$\$ 88,424$	0	\$111,933
	\$51,791	\$54,256	\$53,024	11,230	\$595,453,905	8187	3201	\$53,024	3807	\$92,738	1179	\$117,394
	\$54,257	\$56,722	$\$ 55,490$	1,054	$\$ 58,485,933$	768	300	$\$ 55,490$	357	$\$ 97,051$	111	$\$ 122,854$
	\$56,723	\$59,188	\$57,956	486	$\$ 28,166,373$	354	139	\$57,956	165	$\$ 101,364$	51	\$128,313
	\$59,189	\$61,654	\$60,422	0	\$0	0	0	\$60,422	0	\$105,677	0	\$133,773
	\$61,655	\$64,121	\$62,888	0	\$0	0	0	\$62,888	0	\$109,991	0	\$139,234
	\$64,122	\$66,587	\$65,355	733	\$47,904,849	534	209	\$65,355	248	\$114,305	77	\$144,695
	\$66,588	\$70,079	\$68,334	0	\$0	0	0	\$68,334	0	\$119,515	0	\$151,290
	\$71,080	\$71,520	\$71,300	0	\$0	0	0	\$71,300	0	\$124,704	0	\$157,858
(A) Total employees and wages of this model: (B) Total wages of 12,600 employees at $\$ 39,695$				25,234	\$1,125,052,161							
				25,234	\$1,001,663,630		Total wages plus 10\%:		\$1,101,829,993			

A summary of the total estimated number of jobs and households for the Total Development program is presented in Table B .8 below.

Table B.8: Jobs and Households from Demand Models

Category	Total Development Program
Number of Employees	25,234
Total Households	15,775
Households at or below Moderate Income Level	7,862

The number of households and their estimated incomes from the demand models are use to calculate affordable rent, monthly payment, and corresponding mortgage amounts and home prices.

The affordability tables associated with the Phase I and Total Development Programs are presented in Tables B. 9 and B. 10 on the following pages.

TABLE B.9: Phase I Development Program Affordability

TABLE B.10: Total Development Program Affordability

The affordability tables presented above calculate the various statistics related to the demand for affordable housing by income range. Demand for affordable housing units come from households of "Very Low", "Low", and "Moderate Income", while those households that exceed the Escambia County moderate range are excluded from the affordable demand calculation.

EXHIBIT 6

ENERGY EFFICIENCY ANALYSIS

Energy Efficiency Analysis

Introduction

In 2009, House Bill 697 amended Chapter 163, Florida Statutes to require "strategies to reduce greenhouse gas emissions, promote energy efficient land use patterns, and promote energy conservation" within the Goals, Objectives, and Policies of the local government Comprehensive Plan. Although recent 2011 legislation has further modified the Florida Statutes, requirements for energy efficiency land use patterns and discouragement of urban sprawl remain in the Section 163.3177(6), F.S.

Energy efficient land use patterns can result in cost savings for residents, businesses and property owners through the reduction of Vehicle Miles Traveled (VMT. In addition, energy efficiency and conservation within buildings can result in decreased operating and utility costs.

Energy Efficiency in the Mid-west Escambia County Sector Plan

Future Land Use Element Policy 5.1.2 Part III.2.e of the Escambia County Comprehensive Plan requires "An energy efficiency analysis addressing the ability to reduce greenhouse gas emissions and improve energy efficiency within the DSAP (Detailed Specific Area Plan)."

Because no structures within the Mid-west Escambia County Sector Plan have been built, it is not possible to perform an energy use audit to determine actual greenhouse gas emission reductions at this time. Actual building energy efficiency at the build-out year (2035) may depend upon new technologies for building envelope and insulation, lighting, and Heating, Ventilation and Air Conditioning (HVAC) available during construction.

However, the physical layout of DSAP Land Use Plan is designed to be energy efficient and reduce greenhouse gas emissions through the following sustainability best planning practices:

- Mixed Use Centers: The DSAP Land Use Plan includes a series of mixed-use Neighborhood, Village, and Town Centers. Mixed-use centers integrate residential and non-residential uses (commercial, office, services, etc) into a compact and walkable development form, and can typically meet daily needs of residents, reducing the need to travel to external locations.
- Jobs-to-housing proximity: The DSAP Land Use Plan provides for housing and employment opportunities within close proximity to one another. This potentially reduces Vehicles Miles Traveled (VMT) between home and workplaces. The new regional employment centers also potentially reduce the need to commute into Pensacola or other existing urban areas, further reducing VMT and congestion across the County and region.
- Compact Urban Form: The target residential density of urban land uses within the DSAP ranges from 5 units per acre (Suburban Garden) to 15 units per acre (Town

Center and Regional Employment). This high density range results in an energy efficient land use pattern that is supportive of public transit service, potentially reducing greenhouse gas emissions produced by automobile traffic. The compact nature of these neighborhoods reduces the overall development footprint and reduces the potential for urban sprawl. In addition, residential neighborhoods are strategically located within a 0.5 mile radius from the mixed use Centers in order to encourage walking and other non-vehicular trips.

- Connectivity: The DSAP land use plan provides multiple connections between the different neighborhoods and centers. These connections provide route choices and may reduce congestion, which wastes fossil fuels and results in increased greenhouse gas emissions.
- Alternative Modes of Transportation: The DSAP land use plan identifies alternative modes of transportation, including bicycle circulation routes and potential Bus Rapid Transit routes. The configuration of the mixed use centers results in potential transitready or transit-oriented development, when service available. Encouraging alternative modes of transportation will reduce VMT and greenhouse gas emissions.

Summary

The DSAP Land Use Plan is designed to be energy efficient, reduce greenhouse gas emissions, and is consistent with Policy 5.1.2 Part III.2.e of the Escambia County Comprehensive Plan.

As demonstrated above, the Preliminary DSAP Land Use Plan is also consistent with Policies FLU 5.1.2.d and 5.4.5 of the Escambia County Comprehensive Plan.

FLU 5.1.2 Development within the OSP area shall support and further the following general principles: Environment
a. Establish a "green infrastructure" network of interconnected recreation areas and open space
b. Identify, protect and when impacted by development restore key ecosystems
c. Identify, protect and when impacted by development restore wildlife habitat and corridors
d. Reduce greenhouse gas (GHG) emissions

FLU 5.4.5 Measures shall be implemented to reduce greenhouse gas (GHG) emissions consistent with the intent of Chapter 2008-191, Laws of Florida. The implementation of this policy shall include but not be limited to the following measures:
a. Reduction of vehicle miles traveled (VMT) by encouraging the design of compact, walkable, mixed-use, transit-oriented neigbborboods.
b. Creation of a bighly interconnected, multi-modal transportation that incorporates facilities for current and future transit systems.
c. Promotion of alternative (non-fossil fuel) energy sources.

Finally, the DSAP Land Use Plan is consistent with applicable Future Land Use, Transportation, and Conservation energy efficiency provisions of Chapter 163.3177, Florida Statutes.

Recommendations

The following recommendations for energy efficiency are provided as supplemental to the DSAP Design Guidelines. Escambia County should encourage each applicant and/or developer to include these recommendations in future projects:

1. Within the Midwest Escambia County Sector Plan, the County should develop an incentive program to encourage construction that meets the energy efficiency criteria of the United States Green Building Council (USGBC) Leadership in Energy and Environmental Design (LEED) rating systems, Florida Green Building Coalition (FGBC) certification, US Environmental Protection Agency (EPA) Energy Star program, or a similar third-party green building certification. The incentive program may include educational materials, density or intensity bonuses, expedited permitting, and/or public recognition.
2. Within the Midwest Escambia County Sector Plan, homeowner associations and business owner associations should not prohibit the use of energy-efficient or alternative-energy practices, such as photovoltaic panels, passive solar orientation of buildings, or strategic placement of landscaping materials to reduce energy consumption.
3. Each neighborhood and center should provide a hierarchical, interconnected street network designed to reduce automotive trips and trip lengths.
4. Each neighborhood and center should provide a connected network of pedestrian and bicycle facilities to promote biking and walking mode-split within each new development area.
5. Conduct an Energy Consumption Audit for a completed "pilot neighborhood" to establish a typical baseline of energy use. This baseline can be used to determine if future development is more or less energy efficient and can help future residents select energy and cost-efficient homes.
6. All street lighting fixtures should use Light Emitting Diode (LED) or other energy efficient lighting technologies available at the time of construction.
7. Public right-of-ways should include shade-providing landscaping to increase pedestrian comfort.
8. Encourage the use of renewable energy sources, such as wind turbines or photovoltaic solar panels, in Regional Employment Centers, open space, and the landfill, where appropriate.
9. Encourage the use of the following energy efficiency tools in all new buildings within the Midwest Escambia County Sector Plan:
o Programmable thermostats
o Insulation
o Boiler system
o Ventilation
o Indoor lighting fixtures
o Computer power management
10. Encourage non-residential buildings (including office, retail, commercial, services, civic, institutional) to provide preferred parking for hybrid, biodiesel, or other alternative fuel vehicles.

EXHIBIT 7

LAND USE NEED ANALYSIS

Land Use Need Analysis

Consistent with the preliminary DSAP provisions outlined in Policy FLU 5.6.1(III)(2)(f) this analysis has been prepared to demonstrate that the proposed mix of land uses within the overall DSAP boundary is sufficient to accommodate the projected population and their associated employment demands. Moreover, the analysis reflects Escambia County's ability to alter past development trends while promoting a more sustainable development pattern. Reaching this goal is largely dependent upon providing and designating an ample amount of land for economic growth, which in turn results in a strong jobs-to-housing balance. A secondary benefit from having a strong jobs-to-housing balance is the result of reducing the County's Vehicular Miles Traveled (VMT) average and future Green House Gas (GHG) emissions by directing nonresidential development to strategically planned employment centers, town centers and village centers.

Jobs-to-Housing Balance

A jobs-to-housing balance ratio expresses quantitatively the relationship between where people work (the "jobs" side) and where they live (the "housing" side). The terminology "jobs-tohousing balance" implies a direct correlation between an area's supply of jobs and housing units; however, it is recognized as more of a metric of economic sustainability that measures the relationship between the number of working opportunities (jobs) and employment seekers. When an area has a low job-to-housing balance, it indicates that on average, the majority of employed residents travel to other area's for work. It is also creates longer commute times and a higher Vehicle Miles Traveled (VMT) average which, from an environmental perspective, contributes to greater Green-House Gas (GHG) emissions.

Although there is no single, universally accepted process for measuring a jobs-to-housing balance, commonly used measures involve the analysis of the following elements:

- Jobs-to-housing units ratio
- Jobs-to-occupied bousing units ratio
- Percentage of workers who reside locally
- Employment-to-population ratio
- Jobs-to-employed residents (labor force) ratio

Relying solely on the supply of existing housing units to represent demand for working opportunities, often inaccurately represents the actual number of employed residents in a community ${ }^{1}$. For example, one housing unit may consist of any number of workers - including no workers at all.

Given the inaccuracy of an analysis that relies too heavily on the supply of housing units, this analysis emphasizes the ratio of "jobs-to-employed residents". It is generally superior to the other options described above, and is easier to understand because parity can be expressed as a one-to-one ratio, i.e. one local job to one local worker.

[^2]In terms of the subject DSAPs, the jobs-to-housing balance ratio calculations outlined in this analysis have been based on the maximum development program allowed within the sector planning area at buildout. Comprehensive Plan Policy FLU 5.1.3 limits overall development to 23,000 residential units and $12,175,000$ sq. ft of non-residential uses and such non-residential uses have been restricted to specific mixed-use centers. These centers were analyzed to determine the amount of employment that may be generated in each and was divided into four primary employment categories: industrial, retail, office and public/government. Assumptions, based upon the stated purpose and standards for each center, were made regarding the allocation of available non-residential square footage to each of the aforementioned categories. For instance, the Regional Employment Districts were weighted heavily towards industrial and office while the Neighborhood Centers were designated as primarily retail.

Utilizing data published in Arthur Nelson’s "Planner's Estimating Guide, Projecting Land-use and Facility Needs", an average gross square feet per employee has been assigned to each of the primary employment categories. This includes 675 gross square feet per employee for retail use; 500 gross square feet per employee for industrial use; and 350 gross square feet per employee for office or public/government use. The projected overall gross square footage for each land use type has then divided by the average square feet per employee, resulting in a yield of projected jobs for each. This projected employment data has been demonstrated in Exhibit A below.

Assuming a maximum theoretical build-out under the stated mixture of uses, the proposed DSAP area would produce approximately 27,145 jobs. When compared to the maximum residential build-out of 23,000 dwelling units, the result is a jobs-to-employed residents ratio of 1.0 to 1.18. It should be noted, that although there is no single perfect ratio, an area is generally considered to be "balanced if it has a jobs-to-housing ratio of roughly 0.8 to 1.2. ${ }^{2}$

Actual employment figures for the sector planning area will be subject to many variables, including availability of developable land, actual mixture of uses and final site, building and employer specifications. For example, although an average of 500 gross square feet per employee has been assumed for industrial land use, the range of potential square feet per employee varies from 275 (transportation, communications and utilities) to 700 (wholesale trade). Given the significant role that industrial employment will plays in the sector planning area, variations in the exact type of industrial end user may affect the overall employment figures by as much as 38%.

Conclusion

The primary goal of the Mid-West Escambia County Optional Sector Plan is to encourage a more cohesive and sustainable development pattern, by emphasizing urban form and the protection of regional resources and facilities. By proactively directing growth to the most appropriate areas, the County will be able to discourage patterns of urban sprawl and better protect important ecosystems. As demonstrated through this land use need analysis, the designated land uses within the sector planning area will also strengthen the County's existing jobs-to-housing balance ratio by providing housing opportunities near places of employment.

[^3]Table A: PROPOSED DSAP AREA EMPLOYMENT CALCULATIONS
Part 1-Regional Employment Districts

Land Use	Development Assumption	Square Footage	Sq. Ft per Employee*	Potential Jobs
Office	30%	$3,150,000$	350	9,000
Retail	5%	525,000	675	778
Industrial	60%	$6,300,000$	500	12,600
Public/Government	5%	525,000	350	1,500
Totals	$\mathbf{1 0 0 \%}$	$\mathbf{1 0 , 5 0 0 , 0 0 0}$		$\mathbf{2 3 , 8 7 8}$

Part 2: Regional Town Center

Land Uses	Development Assumption	Square Footage	Sq. Ft per Employee*	Potential Jobs
Office	30%	360,000	350	1,029
Retail	60%	720,000	675	1,067
Industrial	NOT PERMITTED			
Public/Government	10%	120,000	350	343
Totals	$\mathbf{1 0 0 \%}$	$\mathbf{1 , 2 0 0 , 0 0 0}$		$\mathbf{2 , 4 3 8}$

Part 3: Village Centers

Land Uses	Development Assumption	Square Footage	Sq. Ft per Employee *	Potential Jobs
Office	15%	60,000	350	171
Retail	80%	320,000	675	474
Industrial	NOT PERMITTED			
Public/Government	5%	20,000	350	57
Totals	$\mathbf{1 0 0 \%} \%$	$\mathbf{4 0 0 , 0 0 0}$		$\mathbf{7 0 3}$

Part 4: Neighborhood Centers

Land Uses	Development Assumption	Square Footage	Sq. Ft per Employee*	Potential Jobs
Office	10%	7,500	350	21
Retail	85%	63,750	675	94
Industrial	NOT PERMITTED			
Public/Government	5%	3,750	350	11
Totals	$\mathbf{1 0 0 \%}$	$\mathbf{7 5 , 0 0 0}$		$\mathbf{1 2 7}$

TOTAL POTENTIAL JOB CREATION:
*Nelson, A. C. (2004). Planners Estimating Guide, Projecting Land-use and Facility Needs

[^0]: Escambia County Mid-West Sector Plan
 Project № 4249
 Page 49

[^1]:

[^2]: ${ }^{1}$ Weitz, Jerry. 2003. American Planning Association - Planning Advisory Service Report, Number 516

[^3]: ${ }^{2}$ Cervero, Robert. 1996. "Jobs-Housing Balance Revisited: Trends and Impacts in the San Francisco Bay Area." Journal of the American Planning Association 62, no. 4: 492-511.

